CT Accreditation Program: Image Quality and Dose Measurements. Cynthia H. McCollough, Ph.D. Department of Radiology Mayo Clinic Rochester, MN

Similar documents
Cynthia H. McCollough b) and Michael R. Bruesewitz Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905

American College of Radiology CT Accreditation Program. Testing Instructions

Assessing Radiation Dose: How to Do It Right

Moving Forward What does this mean for the Medical Physicist and the Imaging Community?

2/28/2011. MIPPA overview and CMS requirements. CT accreditation. Today s agenda. About MIPPA. Computed Tomography

The AAPM does not endorse any products, manufacturers, or suppliers. Nothing in this publication should be interpreted as implying such endorsement.

WHERE IN THE WORLD JILL LIPOTI?

Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation.

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements

Prepublication Requirements

CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington

How To Improve Your Ct Image Quality

SUBCHAPTER 22 QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH

REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22

Multi-slice Helical CT Scanning of the Chest

Physics testing of image detectors

Diagnostic Exposure Tracking in the Medical Record

Practical exercise: Effective dose estimate in CT

INTRODUCTION. A. Purpose

Acknowledgement. Diagnostic X-Ray Shielding. Nomenclature for Radiation Design Criteria. Shielding Design Goal (Air Kerma):

AAPM Medical Physics Practice Guideline 1.a: CT Protocol Management and Review Practice Guideline

Purchasing a cardiac CT scanner: What the radiologist needs to know

Quality control of CT systems by automated monitoring of key performance indicators: a two-year study

The Challenge of CT Dose Records

Tracking Radiation Exposure From Medical Diagnostic Procedures: Siemens Perspectives

M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy

The disclaimer on page 1 is an integral part of this document. Copyright February 23, 2016 by AAPM. All rights reserved.

Breast MRI Quality Control

3/12/2014. Disclosures. Understanding IAC CT Accreditation. Outline. Learning Objectives. Who is the IAC?

ACR AAPM TECHNICAL STANDARD FOR DIAGNOSTIC MEDICAL PHYSICS PERFORMANCE MONITORING OF MAGNETIC RESONANCE IMAGING (MRI) EQUIPMENT

Spiral CT: Single and Multiple Detector Systems. AAPM Refresher Course Nashville, TN July 28,1999

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION SOURCES

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage

Role of the Medical Physicist in Clinical Implementation of Breast Tomosynthesis

QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET

Patient-centered CT imaging: New methods for patient-specific optimization 1 of image quality and radiation dose

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

Pediatric Hospitals Bring Low-dose CT to the Middle East

Nuclear Medicine Accreditation Program Requirements

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter

TISSUE MIMICKING GEL QUALITY LE PHANTOM SERIES DESIGN. performance the ultrasound labs ofand. icking material has the same attenuation mim-

Dose Measurement in Mammography; What are we measuring? David E. Hintenlang, Ph.D. DABR University of Florida

Update on ACR Digital Mammography QC Manual

General requirements. 1. Administrative Controls.

Recommendations for a technical quality control program for diagnostic X-ray equipment

Patient Dose Tracking for Imaging Studies. David E. Hintenlang, Ph.D., DABR University of Florida

IAC Ch 41, p.1. Procedure means a stereotactically guided breast biopsy performed on a patient for diagnostic purposes.

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

Thinking ahead. Focused on life. REALIZED: GROUNDBREAKING RESOLUTION OF 80 µm VOXEL

How To Calculate A Patient Dose In Ct

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

The IAC Standards and Guidelines for CT Accreditation

Q.A. Collectible. Sponsored by CRCPD s Committee on Quality Assurance in Diagnostic X-Ray (H-7)

PET Accreditation Program Requirements

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm

Clinic. ED Trauma Trauma Stroke. OR Neuro/Spine. Critical Care. Neuro ENT. Diagnostic. Pediatric. Radiology. Plastics Thoracic. Neuro.

Accreditation Is Coming

R/F. Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening. 3. Utility of Chest Tomosynthesis. 1.

CT QC Under the ACR QC Manual. What? There s a Manual?? Learning Objectives 8/6/12! ! YES!!! Almost. ! Doesn t have a pretty cover yet

Surveying and QC of Stereotactic Breast Biopsy Units for ACR Accreditation

SUMMARY OF CURRENT UK LEGISLATION AND GUIDELINES

1. Provide clinical training in radiation oncology physics within a structured clinical environment.

X-ray (Radiography) - Abdomen

Patient Exposure Doses During Diagnostic Radiography

Quantitative Imaging In Clinical Trials Using PET/CT: Update

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects.

Institution-wide Training & Educational Program for CT Technologists

GE Healthcare. DoseWatch. Gathering Radiation Dose Data

Chest CT protocols. Mannudeep K. Kalra, MD, DNB. Dianna D. Cody, PhD. Massachusetts General Hospital Harvard Medical School

Radiation Exposure in X-ray and CT Examinations

The Possibilities Tomosynthesis Brings to Lung Cancer Screening

Use of 3D Printers in Proton Therapy

Ultrasound Phantoms: B-Mode, Doppler and Others. Heather M. Pierce, B.S. Norfolk, VA

X-ray (Radiography) - Bone

Gestión global de la dosis en TC. Sistema de registro y gestión

PET/CT QC/QA. Quality Control in PET. Magnus Dahlbom, Ph.D. Verify the operational integrity of the system. PET Detectors

Use of lead shielding for adult chest CT. patient & radiographer experiences

Staff Doses & Practical Radiation Protection in DEXA

Intensity-Modulated Radiation Therapy (IMRT)

Computed Tomography Radiation Safety Issues in Ontario

First Three Years After Project Proton Therapy Facility:

Quality Control of Full Field Digital Mammography Units

Automated EMR Dose History Extraction and Monitoring

Dose Modulation Technique in CT

QUALITY ASSURANCE PROGRAMS FOR DIAGNOSTIC RADIOLOGY FACILITIES. (a) Applicability. (b) Definitions

ESTIMATING POPULATION DOSES FROM MEDICAL RADIOLOGY

Cabrillo College Catalog

NATIONWIDE EVALUATION OF X-RAY TRENDS (NEXT) TABULATION AND GRAPHICAL SUMMARY OF 2000 SURVEY OF COMPUTED TOMOGRAPHY

Please follow all instructions carefully.

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

Recognition. Radiation Survey Objectives. Objectives. Part 1 Documentation Radiation Source Survey Objectives Radiation Detectors Techniques

Table of Contents. Scan acquisition and user interface basics. Dose modulation and reduction tools. Multi-Slice Detector Geometry

Low-dose CT for Pulmonary Embolism

Evaluation of the image quality in computed tomography: different phantoms

Quality Assurance. The selection of the equipment. Equipment Specifications. Medical Exposure Directive 97/43 Euratom. Quality Assurance Programme

Manual for Accreditation of Agencies for Quality Assurance of Diagnostic X-ray Equipment

Cone Beam Reconstruction Jiang Hsieh, Ph.D.

Transcription:

CT Accreditation Program: Image Quality and Dose Measurements Cynthia H. McCollough, Ph.D. Department of Radiology Mayo Clinic Rochester, MN In 1997, the ACR approved the development of an Accreditation Program for CT. Since that time, many knowledgeable and dedicated individuals have volunteered countless hours towards the development of the CT Accreditation Program, including radiologists, medical physicists, and ACR staff members. The CT Accreditation committee is chaired by Robert Zeman, M.D. I was pleased to be asked to chair the Physics subcommittee, which includes fellow physicists Mike McNitt-Gray Ph.D., Tom Payne Ph.D., Tom Ruckdeschel M.S., and physics-savvy radiologist, James Brink, M.D. I am particularly pleased to report that the physics subcommittee members were involved in the full gamut of committee activities from the beginning, and have contributed significantly to the shaping of the program, especially with respect to dealing with the wide range of rapidly evolving equipment and dose awareness issues. The ACR s CT Accreditation Program evaluates the following primary determinants of clinical image quality and, ultimately, the quality of patient care: - qualifications of personnel - equipment performance - effectiveness of quality control measures - clinical images and exam protocols. For the program to achieve its full potential in reducing dose and increasing image quality, it is essential that medical physicists contribute to each of these areas. An affordable, high quality CT phantom was developed to permit a standardized and comprehensive evaluation of all QC parameters. It can be used by the medical physicist and onsite QC personnel in the pursuit of the goals of the accreditation program. Process Overview When a facility first applies to the ACR for accreditation, the application questionnaire requires information concerning the qualifications of the radiologists, radiologic technologists, and medical physicists (see Appendix A for the requirements of a Qualified Medical Physicist). Additional information common to the practice of CT, such as the number and types of CT scanners, is requested. After this information is reviewed and approved by the ACR, the facility is sent the Full Application, which details the requirements for the acquisition of clinical and phantom images and the submission of scan protocols, safety policies, and quality assurance program documentation. The facility receiving ACR CT Accreditation is awarded a three-year certificate recognizing its achievement. Clinical images from the basic clinical examinations, phantom images, and radiation dosage measurements are required of new scanners added between accreditation cycles. CT Accreditation Program: Image Quality and Dose Measurements Page 1 of 8

The Role of the Physicist The qualified medical physicist plays an essential role in the accreditation program, as he or she must perform initial performance testing upon installation of a CT system, supervise the ongoing equipment quality control program, be available for consultations relating to radiation dose to the patient or facility personnel, and work in close collaboration with the radiologist, technologist, and manufacturer to optimize imaging protocols. As the use of CT continues to grow, both in the number and type of examinations, as well as the complexity of the equipment, it is imperative that the medical physics community assists in the safe and efficient use of this powerful imaging tool. Phantom Testing: Image Quality The Physics Subcommittee met in March of 1999 for a Scan-a-thon, where we discussed and scanned all then-current commercial (and several home-made ) CT image quality phantoms, in attempt to determine if any existing phantom met the needs of the program. We attempted to find a method by which different phantoms could be used to test similar image quality properties. After much data collection, review, analysis and discussion, the committee determined that it would be necessary, as with each of the other ACR Accreditation programs, to allow only one phantom design. The committee worked to design a phantom that was easy to use, measured all the image quality parameters required by the ACR standards, was made from solid materials, and could be reproducibly and economically manufactured. The design specifications were sent to all known phantom manufacturers to obtain prototype phantoms and cost estimates. In the end, Gammex-RMI was awarded the contract to produce the ACR CT Accreditation phantom. The well-established CTDI head and body phantoms are used for the dose measurement portions of the accreditation application. In order to assess the technical performance of each CT scanner, phantom images of the ACR CT Accreditation Phantom will be required using the facility s typical head and body exam protocols. The specific performance criteria evaluated using the phantom include: Slice width and positioning CT number accuracy Low contrast resolution High contrast resolution Image uniformity CT Accreditation Program: Image Quality and Dose Measurements Page 2 of 8

The Phantom The ACR CT Accreditation Phantom is a solid phantom containing four modules, and is constructed primarily from a water-equivalent material. Each module is 4 cm in depth and 20 cm in diameter. There are external alignment markings scribed and painted white (to reflect alignment lights) on EACH module to allow centering of the phantom in the axial (z-axis, cranial/caudal), coronal (y-axis, anterior/posterior), and sagittal (x-axis, left/right) directions. There are also HEAD, FOOT, and TOP markings on the phantom to assist with alignment. Head Foot 4 3 2 1 20 cm High contrast resolution Uniformity & noise Distance accuracy & SSP Low contrast resolution Alignment CT # Slice width 4 cm Module 1 is used to assess positioning and alignment, CT number accuracy, and slice thickness. The background material is water equivalent. For positioning, the module has 1-mm diameter steel BBs embedded at the longitudinal (z-axis) center of the module, with the outer surface of the BB at the phantom surface at 3, 6, 9, and 12 o clock positions within the field of view (19.9cm center to center). To assess CT number accuracy, there are cylinders of different materials: bone-mimicking material ( Bone ), polyethylene, water equivalent material, acrylic, and air. Each cylinder, except the water cylinder, has a diameter of 25 mm and a depth of 4 cm. The water cylinder has a diameter of 50 mm and a depth of 4 cm. To assess slice thickness, two ramps are included which consist of a series of wires that are visible in 0.5-mm z-axis increments. Water 0 HU Polyethylene -95 HU Acrylic +120 HU Bone +955 HU Air -1000 HU CT Accreditation Program: Image Quality and Dose Measurements Page 3 of 8

Module 2 is used to assess low contrast resolution. This module consists of a series of cylinders of different diameters, all at 0.6% (6 HU) difference from a background material having a mean CT number of approximately 90 HU. The cylinder-to-background contrast is energy-independent. There are four cylinders for each of the following diameters: 2 mm, 3 mm, 4 mm, 5 mm, and 6 mm. The space between each cylinder is equal to the diameter of the cylinder. A 25-mm cylinder is included to verify the cylinderto-background contrast level. 25 mm 2 mm 6 mm 3 mm 5 mm 4 mm Module 3 consists of a uniform, tissue-equivalent material to assess CT number uniformity. Two very small BBs (0.28 mm each) are included for optional use in assessing the accuracy of in-plane distance measurements. They may also be used to assess section sensitivity profiles. 100 mm Module 4 is used to assess high contrast (spatial) resolution. It contains eight bar resolution patterns: 4, 5, 6, 7, 8, 9, 10 and 12 lp/cm, each fitting into a 15-mm x 15-mm square region. The z- axis depth of each bar pattern is 3.8 cm, beginning at the Module 3 interface. The aluminum bar patterns provide very high object contrast relative to the background material. Module 4 also has four 1mm steel beads, as described for Module 1. 12 4 10 5 9 6 8 7 CT Accreditation Program: Image Quality and Dose Measurements Page 4 of 8

Phantom Testing: Dose Dose measurements are required for each of a facility s CT scanner(s) and are to be made using the standard head and body CTDI phantoms and a pencil ionization chamber. The physicist instruction manual is very detailed with regard to how dose should be measured and provides instructional material to assist the facility physicist to perform estimates of patient dose parameters such as Effective Dose and Dose Length Product. See the Appendix B for CT Dose definitions. Using the CTDI measurements, the physicist must calculate (with the aid of a provided Excel spreadsheet) several descriptors of dose for an adult head, pediatric abdomen (5 y.o.) and adult abdomen examination. The calculations use the technique factors provided by the site. Thus, a measure of each facility s dose for these three examinations will be submitted to the ACR. Reference dose values are given in the program documentation and are to be used by the ACR and the site to identify situations where the level of patient dose is unusually high. If a dose for any of the three exams exceeds the respective reference value, the site will be required to submit documentation detailing their investigation, corrective action if necessary, or justification of the higher dose level. The current reference CTDIw values are as follows: Adult head, 60 mgy; Pediatric Abdomen (5 y.o.), 25 mgy; Adult Abdomen, 35 mgy. Clinical Images Clinical images from a basic, specialty and pediatric (if applicable) exam must be submitted from each scanner using the site s routine exam protocols. Specific instructions are included in the application packet as to what types of exams are required. Summary In summary, it has been an extraordinary experience to participate in the development of the ACR CT Accreditation program. I am confident that in spite of the growing pains involved in developing and going through such a comprehensive quality assessment (and quality improvement) program, the radiology community, and the patients that we serve, will benefit from the accreditation experience. For further information, or to request an application packet, please contact the ACR CT Accreditation Program office in Reston, Virginia should be contacted for further information at 800-227-5463. CT Accreditation Program: Image Quality and Dose Measurements Page 5 of 8

Appendix A: Medical Physicist Personnel Qualifications A Qualified Medical Physicist is an individual who is competent to practice independently one or more of the subfields in medical physics. The American College of Radiology (ACR) considers that certification and continuing education in the appropriate subfield(s) demonstrate that an individual is competent to practice in one or more of the subfields in medical physics and to be a Qualified Medical Physicist. The ACR recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR). The appropriate subfields of medical physics for CT Accreditation are Diagnostic Radiological Physics and Radiological Physics. Continuing education for a qualified medical physicist should be in accordance with the ACR Standard for Continuing Education (CME). The qualified medical physicist must be familiar with the principles of imaging physics and of radiation protection; the guidelines of the National Council on Radiation Protection and Measurements; laws and regulations pertaining to the performance of the equipment being tested; the function, clinical uses, and performance specifications of the imaging equipment; and calibration processes and limitations of the instruments used for performance testing. The qualified medical physicist may be assisted by properly trained individuals in obtaining data. These individuals must be approved by the qualified medical physicist in the techniques of performing tests, the function and limitations of the imaging equipment and test instruments, the reason for the tests, and the importance of the test results. The qualified medical physicist is responsible for and must be present during initial and annual surveys and must review, interpret, and approve all data, as well as provide a signed report of conclusions. The qualified Medical Physicist should be available for consultation regarding patient dosimetry issues within a reasonable period of time. CT Accreditation Program: Image Quality and Dose Measurements Page 6 of 8

Appendix B: CT Dose Definitions CT Dose Index (CTDI 100 ) CTDI 100 is acquired using a 100-mm long, 3-cc active volume CT pencil ionization chamber and two standard CTDI acrylic phantoms [head (16-cm diameter) and body (32-cm diameter)]. The CTDI 100 measures, over 100 mm, the radiation produced from one axial exposure. The measurement must be performed with a stationary patient table. It is calculated according to the formula: CTDI 100 (rad) = f (rad/r) C meter reading (R) 100-mm N T (mm) where C = the chamber calibration factor, N = the number of tomographic sections imaged in a single axial scan. This is equal to the number of data channels used in a particular scan. The value of N may be less than or equal to the maximum number of data channels available on the system. T = the width of the tomographic section along the z axis imaged by one data channel. In multi-detector row (multi-slice) CT scanners, several detector elements may be grouped together to form one data channel. In single-detector row (single-slice) CT, the z-axis collimation (T) is the nominal scan width. One must use the f-factor (f) appropriate to the task at hand to convert exposure (R) to absorbed dose (rad): 0.78 rad/r for comparison to FDA-required, manufacturer-reported data (Lucite) 0.94 or 0.98 rad/r for patient dose estimates (tissue or water) 0.87 rad/r for calculation of, or comparison to, CTDI W (air). When an ion chamber measurement is given in air kerma (mgy), care must be taken to indicate which f-factor is used, if any, since the chamber reading and CTDI value are both given in units of mgy: 0.90 mgy/mgy for dose to Lucite 1.06 mgy/mgy for dose to tissue 1.00 mgy/mgy for dose to air. Weighted CT Dose Index (CTDI W ) CTDI W = 1/3 CTDI 100,center + 2/3 CTDI 100,edge Per IEC 60601-2-44, CTDI W must use CTDI 100 as described above and an f-factor for air (0.87 rad/r or 1.0 mgy/mgy). Volume CTDI W (CTDI vol ) CTDI vol = CTDI W N T / I where I = the table increment per axial scan, or the table increment per rotation of the x-ray tube in a helical scan. In helical CT, the term pitch (P) is defined as the ratio of the table increment per tube rotation to the nominal (total) width of the radiation beam. Hence, Pitch = I / (N T) CT Accreditation Program: Image Quality and Dose Measurements Page 7 of 8

and CTDI vol = CTDI W /pitch. CTDI vol is the parameter that best estimates the average dose at a point with the scan volume for a particular scan protocol. Dose Length Product (DLP) DLP = CTDI vol (mgy) scan length (cm) The dose-length product gives an indication of the energy imparted for a particular scan, as clearly the radiation risk for a 20 mm scan length differs from that of a 200 mm scan length, in spite of each having the identical CTDI vol value. Effective Dose Although more rigorous techniques exist for estimating effective dose (and the dose to particular organs), a reasonable estimate of effective dose can be obtained with use of the following: Effective dose = k DLP where k (msv mgy -1 cm -1 ) is dependent upon body region and is given in the European Guidelines on Quality Criteria for Computed Tomography (EUR 16262 EN, May 1999) Region of body k (msv mgy -1 cm -1 ) Head 0.0023 Neck 0.0054 Chest 0.017 Abdomen 0.015 Pelvis 0.019 Additional references/resources: AAPM Reports # 31, 39, 74 ImPact (UK CT expert group): Impactscan.org Kalender, Schmidt, Zankl et al., A PC program for estimating organ dose and effective dose values in computed tomography, Eur Radiol 9:555-562 (1999). McCollough, Schueler, Calculation of effective dose, Med Phys 27:838-844 (2000) McNitt-Gray, Radiation dose in CT, Radiographics 22:1541-1553 (2002) Nagel, Radiation exposure in computed tomography, 2 nd edition. Frankfurt: COCIR (2000) [cocir@zvei.org] Rothenberg, Pentlow, CT Dosimetry and radiation safety, Categorical Course in Diagnostic Radiology Physics: CT and US Cross-sectional Imaging. RSNA (2000) CT Accreditation Program: Image Quality and Dose Measurements Page 8 of 8