Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation.
|
|
|
- Lisa Ferguson
- 9 years ago
- Views:
Transcription
1 Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation. Andrew Bridges Clinical Scientist Diagnostic Radiology & Radiation Protection Physics
2 Overview What is CBCT? Use of CBCT in Radiotherapy Dosimetry Concomitant Doses Issues with CBCT Dosimetry Image Quality Protocol Optimisation
3 Fan beam vs Cone beam
4 Use of kv CBCT Radiology: Interventional Radiology: Rotation angiography Orthopaedics: Pelvis fractures & Hip Dysplasia Radiotherapy??? Image guided radiotherapy: H&N, Chest, Pelvis, etc.
5 Why is it used in Radiotherapy? Localisation of tumours required to ensure accurate delivery of treatment. Planar MV imaging provides limited localisation using bony anatomy. Unable to correct for tumour motion between fractions and so causes loss of tumour control and increased normal tissue irradiation. kv imaging provides soft tissue contrast and comparison with planning CT This allows the treatment to be corrected for the tumour motion.
6 Situation at UHCW Two Elekta Linear Accelerators fitted with Synergy XVI kv Cone-beam systems. Use of these linear accelerators is targeted at Head & neck (limited margins) and prostate (organ motion) patients. Patients are scanned daily and image registration is carried out between planning CT and CBCT. The image registration matches bony anatomy and Soft tissue structures between the two data sets automated mostly. ( Grey level matching) Registration is reviewed and the table corrections are applied. If table correction is greater than 10mm in any one direction, then this is reviewed by the Oncologist and a Radiotherapy Physicist; this may require a re-plan.
7 Commissioning Follows similar testing as other diagnostic imaging equipment: Tube & Generator Performance in Planar mode, HVL, Field Sizes Dosimetry CTDI air, CTDI w. Image Quality Spatial Resolution & Contrast Visibility. Radiation Protection Critical Exam, Leakage, Control measures Geometric alignment. Defining Presets Scanning Protocols Further details: Lehmann, J., et al., Commissioning experience with cone-beam computed tomography for image-guided radiation therapy. J Appl Clin Med Phys, (3): p2354
8 Dosimetry? Breakdown of CTDI100 with wider collimations >40mm. XVI CBCT collimation >13.5cm Guidance: AAPM TG111, IAEA Human Health Report 5, etc. Recently reviewed (postcommissioning):
9 CTDI air,100 (mgy) CTDI 25 Each protocol was assessed following the IAEA CTDI free-in-air method with a 3.2cc pencil CT chamber (100m length) Abdomen M20 Abdomen M10 CTDI Free in air L N T i n i 1 L = incremental movement Stepped Movement of chamber through cone-beam field of view using accurate table movements. D i Displacement of chamber (mm) -5 Distance from isocentre (mm) Pelvis M20 Protocol measurement L/NxT D i (mgy) CTDI air (mgy)
10 CTDI cont d CTDIw measurements carried out using 16/32cm PMMA phantom. Limited width of phantom (~15cm), approx. to S/M10 collimators. Addition of PMMA next to phantom to provide additional scatter. S/M10 ~ 1% & S/M20 ~ 6% Anatomy Collimator kv Elekta Presets mas CTDI w (mgy) Head & Neck S Head & Neck S Chest M Pelvis M Pelvis M Prostate M Prostate M
11 CTDI cont d Issues with both CTDI measurements were found, in particular tube cooling. For CTDIair, rotational & static (Planar) measurements were made. Static measurements approx. 12% greater than rotational. For CTDI w, the 32cm Phantom required significantly higher exposure parameters due to problems with continuous exposure of the chamber on the periphery.
12 Why do concomitant doses matter? Legally, IRMER 2000 requires Justification Justification should occur for each individual patient, based on the risk and benefit of the examination. Therefore, impact of daily CBCT needs to quantified. Allows comparison between imaging used within the treatment pathway Planning CT, Portal (MV) imaging & CBCT Practical reason - Provides dose estimates for Organs At Risk (OAR).
13 How do we calculate them? ImPACT Calculator (1.0.4) Siemens DRH (125kV) No selected collimation, pitch =1 Input CTDI air & n CTDI w Assessed each CBCT protocol and then proceeded to carry out the same with CT simulator protocols.
14 Concomitant Doses Imaging Protocol OAR Organ doses (mgy) Portal XVI CT Sim Brain (S10) brain SG Eyes H&N (S20) brain SG Spinal cord thyroid Eyes oeso Chest (Chest M20) oeso lungs Spinal cord stomach liver breast Abdomen colon Spinal cord 5 - Not Known stomach 5 32 liver 5 31 Pelvis (Pelvis M20) gonads Spinal cord colon Prostate bladder Rectum (Prostate M10) colon gonads prostate bladder Imaging Effective Dose (msv) Protocol XVI CT Sim Brain H&N Chest Abdo - 17 Pelvis Rectum 8.2 7
15 Problems H&N CBCT protocol Half scan (200 o ) Matching of Scanners on ImPACT Siemens DRH ~ 125kV only Detailed information: Sykes JR et al. Dosimetry of CBCT: methods, doses and clinical consequences. Journal of Physics: Conf. Series 444 (2013)012017
16 Optimisation of Protocols Elekta provide the presets for which our calculations were completed. As a result of the image quality testing further dose reduction and optimisation seemed reasonable for the body protocols, in terms of Exposure and Reconstruction parameters.
17 Image Quality 2D QA TOR18FG Contrast & Spatial Resolution 3D QA Catphan Uniformity Low contrast Visibility Uses Polystyrene & LDPE in CT no. Module Spatial Resolution : at least 10 lp/mm Reconstruction Geometry Axial & Sagittal Registration Accuracy MV & kv imaging Positional marker at isocentre Semi-automated image analyse of catphan produced for monthly QC.
18 Presets Volume.ini Imaging protocols Exposure & Acq. parameters Reconstruction Reconstruction.ini Pre-filter Scatter correction Reconstruction Filter Parameters Multi-level Gain & Filter calibrations [Pelvis M20] Value PresetDescription Pelvis VolumeView Mode Clinical kv 120 NominalmAPerFrame 16 NominalmsPerFrame 40 kvcollimator M20 kvfilter F1 StartAngle -180 StartAcqAngle -180 StopAcqAngle 180 GantrySpeed 180 Direction CW Frames 660 TableIsocentric 0 TableColumnRotation 0 DefaultReconstructionPreset M20 - Med_Res [M20 - Med_Res] Value ReconstructionVoxelSize 1.0 ReconstructionDimensionX 401 ReconstructionDimensionY 264 ReconstructionDimensionZ 410 ReconstructionOffsetX 0 ReconstructionOffsetY 0 ReconstructionOffsetZ 0 ReconstructionFilter Wiener NumberOfReconstructionFilterParameters 2 ReconstructionFilterParameter ReconstructionFilterParameter2 90 Interpolation Partial2 ScatterCorrection Uniform NumberOfScatterCorrectionParameters 1 ScatterCorrectionParameter1 0.2 ReconstructionDataType Short PreFilter Median 5 ProjectionDownSizeFactor 2
19 Optimisation of Protocols Discussed situation with another department already using the system. Reduced the ma per frame to deliver this reduction, standard body protocols reduced from 40/64mA (Pelvis/Prostate) to 16 ma.
20 Concomitant Doses - Revised Imaging Protocol OAR Organ doses (mgy) Portal XVI CT Sim Brain (S10) brain SG Eyes H&N (S20) brain SG Spinal cord thyroid Eyes oeso Chest (Chest M20) oeso lungs Spinal cord stomach liver breast Abdomen (Abdomen M10) colon Spinal cord stomach liver Pelvis (Pelvis M20) gonads Spinal cord colon Prostate bladder Rectum (Prostate M10) colon gonads prostate bladder Imaging Effective Dose (msv) Protocol XVI CT Sim Brain H&N Chest Abdo Pelvis Rectum 2.0 7
21 Image Quality Results from Recent QC Testing Pelvis M20 422mAs H&N S mAs Protocol Collimator Contrast Visibility Noise (%) Resolution (lp/cm) Pelvis M H&N S
22 Future Work Review of reconstruction presets Scatter correction? Reconstruction Parameters 1 & 2? Optimise protocols appropriate for larger patients Confirm Organ Doses using TLDs
23 Acknowledgements Radiotherapy Physicists & Radiographers at University Hospital.
Assessing Radiation Dose: How to Do It Right
Assessing Radiation Dose: How to Do It Right Michael McNitt-Gray, PhD, DABR, FAAPM Professor, Department of Radiology Director, UCLA Biomedical Physics Graduate Program David Geffen School of Medicine
Radiation Protection in Radiotherapy
Radiation Protection in Radiotherapy Albert Lisbona Medical Physics Department CLCC Nantes Atlantique 44805 Saint-Herblain France [email protected] Radiation therapy The lecture is oriented to
IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.
DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering
kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations
kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations Moyed Miften, PhD Dept of Radiation Oncology University of Colorado Denver Questions Disease Stage (local, regional,
Practical exercise: Effective dose estimate in CT
Practical exercise: Effective dose estimate in CT TRAINING COURCE PROGRAM 19 20 May 2011, Sofia, Bulgaria Virginia Tsapaki Medical Physics Dpt Konstantopoulio General Hospital email: [email protected]
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy Katja Langen, PhD Research supported by TomoTherapy Inc. Today s Lecture Introduction to helical
1. Provide clinical training in radiation oncology physics within a structured clinical environment.
Medical Physics Residency Program Overview Our Physics Residency Training is a 2 year program typically beginning July 1 each year. The first year resident will work closely with medical physicists responsible
CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions
CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions Frank N. Ranallo, Ph.D. Associate Professor of Medical Physics & Radiology University of Wisconsin School of
Acknowledgements. PMH, Toronto David Jaffray Doug Moseley Jeffrey Siewerdsen. Beaumont Hospital Di Yan Alvaro Martinez. Elekta Synergy Research Group
Cone Beam CT guided Radiotherapy Jan-Jakob Sonke Acknowledgements NKI-AVL: Marcel van Herk, Jose Belderbos, Suzanne van Beek, Anja Betgen, Josien de Bois, ~Rianne de Jong, Michel Frenay, Danny Minkema,
A dosimetry technique for measuring kilovoltage cone-beam CT dose on a linear accelerator using radiotherapy equipment
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 4, 2014 A dosimetry technique for measuring kilovoltage cone-beam CT dose on a linear accelerator using radiotherapy equipment Daniel Scandurra,
CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements
CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index Keith J. Strauss, MSc, FAAPM, FACR Clinical Imaging Physicist Cincinnati Children s Hospital University of Cincinnati College of
Purchasing a cardiac CT scanner: What the radiologist needs to know
Purchasing a cardiac CT scanner: What the radiologist needs to know Maria Lewis ImPACT St George s Hospital, London [email protected] CT scanner development Slice wars 1998 Increased z-coverage
MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington
MDCT Technology Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington ACMP Annual Meeting 2008 - Seattle, WA Educational Objectives Historical
REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22
REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22 New Jersey Department of Environmental Protection Bureau of Radiological Health PO Box 415 Trenton NJ
In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers
In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers : Chris Bakker Boxue Liu Alexander Raaijmakers Rajko Topolnjak Richard van de Put Uulke van der
Moving Forward What does this mean for the Medical Physicist and the Imaging Community?
Moving Forward What does this mean for the Medical Physicist and the Imaging Community? John M. Boone, Ph.D., FAAPM, FACR Professor and Vice Chairman of Radiology University of California Davis Medical
Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy
Chapter 7: Clinical Treatment Planning in External Photon Beam Radiotherapy Set of 232 slides based on the chapter authored by W. Parker, H. Patrocinio of the IAEA publication (ISBN 92-0-107304-6): Review
American College of Radiology CT Accreditation Program. Testing Instructions
American College of Radiology CT Accreditation Program Testing Instructions (Revised July 24, 2015) This guide provides all of the instructions necessary for clinical tests, phantom tests and general submission
Cynthia H. McCollough b) and Michael R. Bruesewitz Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
The phantom portion of the American College of Radiology ACR Computed Tomography CT accreditation program: Practical tips, artifact examples, and pitfalls to avoid a Cynthia H. McCollough b) and Michael
Diagnostic Exposure Tracking in the Medical Record
Diagnostic Exposure Tracking in the Medical Record J.A. Seibert, Ph.D. Department of Radiology Sacramento, California USA Vancouver. British Columbia Relevant disclosures None Learning objectives Understand
REPORT ORGANIZATION ABSTRACT I. INTRODUCTION CALCULATION OF EFFECTIVE DOSE PER IMAGE ACQUISITION CALCULATION OF EFFECTIVE DOSE PER TREATMENT COURSE
E S T I M A T I O N O F T H E I M A G I N G D O S E F O R T H E C Y B E R K N I F E R O B O T I C R A D I O S U R G E R Y S Y S T E M REPORT ORGANIZATION ABSTRACT I. INTRODUCTION II. III. IV. CALCULATION
SUBCHAPTER 22 QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS
Note: This is a courtesy copy and is not the official version of this rule. The official, legally effective version of this rule is available through www.lexisnexic.com/bookstore (Phone: (800) 223-1940).
Proton Therapy. What is proton therapy and how is it used?
Scan for mobile link. Proton Therapy Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater
Intensity-Modulated Radiation Therapy (IMRT)
Scan for mobile link. Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear accelerators to safely and painlessly deliver precise radiation doses to a tumor while
QA of intensity-modulated beams using dynamic MLC log files
36 Original Article QA of intensity-modulated beams using dynamic MLC log files M. Dinesh Kumar, N. Thirumavalavan, D. Venugopal Krishna, M. Babaiah Department of Radiation Oncology, Yashoda Cancer Institute,
Staff Doses & Practical Radiation Protection in DEXA
Patient Xray X Doses Staff Doses & Practical Radiation Protection in DEXA Una O ConnorO Dept. of Medical Physics & Bioengineering, St. James s s Hospital. Examination Types General XrayX Fluoroscopy /
WHERE IN THE WORLD JILL LIPOTI?
WHERE IN THE WORLD IS JILL LIPOTI? HELLO FROM NEW JERSEY CRCPD - National Symposium on Fusion Imaging and Multimodalities February 18-20, 2004 Kansas City, Missouri New Jersey s Requirements As They Pertain
Spiral CT: Single and Multiple Detector Systems. AAPM Refresher Course Nashville, TN July 28,1999
Spiral CT: Single and Multiple Detector Systems AAPM Refresher Course Nashville, TN July 28,1999 Mike McNitt-Gray, PhD, DABR Assistant Professor UCLA Radiological Sciences [email protected] X-Ray
The disclaimer on page 1 is an integral part of this document. Copyright February 23, 2016 by AAPM. All rights reserved.
DISCLAIMER: TO THE EXTENT ALLOWED BY LOCAL LAW, THIS INFORMATION IS PROVIDED TO YOU BY THE AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE, A NON-PROFIT ORGANIZATION ORGANIZED TO PROMOTE THE APPLICATION
IBA Proton Therapy. Biomed days 2015. Vincent Bossier. System Architect [email protected]. Protect, Enhance and Save Lives
Vincent Bossier System Architect [email protected] IBA Proton Therapy Biomed days 2015 Protect, Enhance and Save Lives 1 Agenda AN INTRODUCTION TO IBA WHY PROTON THERAPY CLINICAL WORKFLOW TREATMENT
Our Department: structure and organization
EORTC meeting for Radiation Therapy Technologists: RTT s role in the modernization of radiotherapy 10th October 2014, Villejuif (Grand Paris), France Elekta Stereotactic Body Frame: transmission modelled
Fundamentals of Cone-Beam CT Imaging
Fundamentals of Cone-Beam CT Imaging Marc Kachelrieß German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de Learning Objectives To understand the principles of volumetric image formation
Prepublication Requirements
Issued Prepublication Requirements The Joint Commission has approved the following revisions for prepublication. While revised requirements are published in the semiannual updates to the print manuals
Independent corroboration of monitor unit calculations performed by a 3D computerized planning system
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 1, NUMBER 4, FALL 2000 Independent corroboration of monitor unit calculations performed by a 3D computerized planning system Konrad W. Leszczynski* and
Quality Assurance. The selection of the equipment. Equipment Specifications. Medical Exposure Directive 97/43 Euratom. Quality Assurance Programme
Medical Exposure Directive 97/43 Euratom Quality Assurance Ministry of Health, Radiation Protection Department, Luxembourg Alexandra Schreiner Medical Physicist Quality Assurance (QA): All those planned
Quality Assurance of Radiotherapy Equipment
Clinical Implementation of Technology & Quality Assurance in Radiation Oncology For the course: Survey of Clinical Radiation Oncology 1 Quality Assurance of Radiotherapy Equipment Outline: A. Criteria
CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH
CT RADIATION DOSE REPORT FROM DICOM Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT Patient comes out... Patient goes in... Big Black Box Radiology
Physics testing of image detectors
Physics testing of image detectors Parameters to test Spatial resolution Contrast resolution Uniformity/geometric distortion Features and Weaknesses of Phantoms for CR/DR System Testing Dose response/signal
How To Improve Your Ct Image Quality
Translating Protocols Between Scanner Manufacturer and Model Cynthia H. McCollough, PhD, FACR, FAAPM Professor of Radiologic Physics Director, CT Clinical Innovation Center Department of Radiology Mayo
Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179
Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179 Jean-Pierre Bissonnette a) Task Group 179, Department of Radiation Physics, Princess Margaret
HDR Brachytherapy 1: Overview of QA. Disclosures: Learning Objectives 7/23/2014
HDR Brachytherapy 1: Overview of QA Bruce Libby Department of Radiation Oncology University of Virginia Health System Disclosures: Nondisclosure agreement with Varian Brachytherapy Shareholder- Varian,
CBCT for Prone Breast. Todd Jenkins, MS, DABR Nash Cancer Treatment Center
CBCT for Prone Breast Todd Jenkins, MS, DABR Nash Cancer Treatment Center Disclosures No outside funding or support Disclosures Techniques likely apply across vendors Prone Breast Technique Rationale
Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm
Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 200-22, p.5-8 MONTE CARLO SIMULATION ANALYSIS OF BACKSCATTER FACTOR FOR LOW-ENERGY X-RAY K. Shimizu, K. Koshida and T. Miyati Department
Clinical Rotation 3: PHYS 705 Fall 2015 (Aug. 25, 2015 to Feb. 25, 2016) COURSE INFORMATION
Clinical Rotation 3: PHYS 705 Fall 2015 (Aug. 25, 2015 to Feb. 25, 2016) COURSE INFORMATION Days: Monday-Friday Times: Full Time Location: One of the participating cancer clinics Program Director: George
3/12/2014. Disclosures. Understanding IAC CT Accreditation. Outline. Learning Objectives. Who is the IAC?
Disclosures Understanding IAC CT Accreditation Serve as one of two AAPM representatives to IAC CT Board of Directors, Serve as IAC representative to AAPM for focus group on accreditations Provide 3-hour
Dose Measurement in Mammography; What are we measuring? David E. Hintenlang, Ph.D. DABR University of Florida
Dose Measurement in Mammography; What are we measuring? David E. Hintenlang, Ph.D. DABR University of Florida Average Glandular Dose Required measurement performed by medical physicist as part of Mammography
Accreditation Is Coming
Accreditation Is Coming Accreditation Is Coming Accreditation Is Coming Yes, It Is! Currently, Accreditation is Voluntary However, Some of the Accrediting Organizations Are Lobbying the Congress to Adopt
Deformable Registration for Image-Guided Radiation Therapy
Symposium Multimodality Imaging for Radiotherapy : State of the art, needs and perspectives 1/33 Deformable Registration for Image-Guided Radiation Therapy David Sarrut «Radiation, images, oncology» team
INTRODUCTION. A. Purpose
New York State Department of Health Bureau of Environmental Radiation Protection Guide for Radiation Safety/Quality Assurance Programs Computed Radiography INTRODUCTION A. Purpose This guide describes
Radiation Therapy. 1. Introduction. 2. Documentation of Compliance. 3. Didactic Competency Requirements. 4. Clinical Competency Requirements
PRIMARY CERTIFICATION DIDACTIC AND CLINICAL COMPETENCY REQUIREMENTS EFFECTIVE JANUARY 2014 Radiation Therapy 1. Introduction Candidates for certification and registration are required to meet the Professional
The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2
The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2 Taxonomy Data Category Number Description Data Fields and Menu Choices 1. Impact 1.1 Incident
at a critical moment Physician Suggestion Line...
Radiation Oncology Exceptional care at a critical moment When your patients require radiation therapy, they deserve the very best care available to them. The Department of Radiation Oncology provides exceptional
Corporate Medical Policy
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Head and Neck File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_head_and_neck
NIA RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning
NIA RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed Date: November,
PRACTICAL TIPS IN ENSURING RADIATION SAFETY IN THE USE OF MEDICAL DIAGNOSTIC X-RAY EQUIPMENT
PRACTICAL TIPS IN ENSURING RADIATION SAFETY IN THE USE OF MEDICAL DIAGNOSTIC X-RAY EQUIPMENT Although the medical uses of X-rays to examine a patient without surgery became an amazing medical breakthrough,
intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis 11/2009 5/2016 5/2017 5/2016
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis
Gamma Knife and Axesse Radiosurgery
Gamma Knife and Axesse Radiosurgery John C Flickinger MD Departments of Radiation Oncology & Neurological Surgery University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania Origin of Radiosurgery
MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline
Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues Timothy D. Solberg David Geffen School of Medicine at UCLA TU-A-517A-1 Presentation Outline MLC Characteristics TG-50
THE DOSIMETRIC EFFECTS OF
THE DOSIMETRIC EFFECTS OF OPTIMIZATION TECHNIQUES IN IMRT/IGRT PLANNING 1 Multiple PTV Head and Neck Treatment Planning, Contouring, Data, Tips, Optimization Techniques, and algorithms AAMD 2013, San Antonio,
Scripps Proton Therapy Center: Configuration and Implementation
Scripps Proton Therapy Center: Configuration and Implementation Anthony Mascia Proton Symposium 2013 Annual AAPM Meeting Indianapolis, Indiana USA Facility Configuration Scripps Proton Therapy Center ***All
Gated Radiotherapy for Lung Cancer
Gated Radiotherapy for Lung Cancer Steve B. Jiang, Ph.D. Depart Of Radiation Oncology University of California San Diego [email protected] radonc.ucsd.edu/research/cart Two Types of Gating Internal gating
Chest CT protocols. Mannudeep K. Kalra, MD, DNB. Dianna D. Cody, PhD. Massachusetts General Hospital Harvard Medical School
Chest CT protocols Mannudeep K. Kalra, MD, DNB Dianna D. Cody, PhD Massachusetts General Hospital Harvard Medical School M.D. Anderson Cancer Center Specific principles Routine chest CT Lung nodule follow
Rb 82 Cardiac PET Scanning Protocols and Dosimetry. Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals
Rb 82 Cardiac PET Scanning Protocols and Dosimetry Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals Overview Rb 82 myocardial perfusion imaging protocols Acquisition Reconstruction
HADRON THERAPY FOR CANCER TREATMENT
HADRON THERAPY FOR CANCER TREATMENT Seminar presented by Arlene Lennox at Fermilab on Nov 21, 2003 CANCER STAGES LOCAL TUMOR REGIONAL METASTASIS SYSTEMIC DISEASE CANCER TREATMENT SURGERY RADIATION THERAPY
Chapter 12 QUALITY ASSURANCE OF EXTERNAL BEAM RADIOTHERAPY
Chapter 12 QUALITY ASSURANCE OF EXTERNAL BEAM RADIOTHERAPY D.I. THWAITES Department of Oncology Physics, Edinburgh Cancer Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT
Daily IGRT with CT-on-Rails Can Safely Reduce Planning Margin for Prostate Cancer: Implication for SBRT Wen Li, Andrew Vassil, Lama Mossolly, Qingyang Shang, Ping Xia Department of Radiation Oncology Why
On Board Cone Beam CT for Treatment Planning in Image Guided Radiotherapy
On Board Cone Beam CT for Treatment Planning in Image Guided Radiotherapy By Fouad Abdulaziz Abolaban A thesis submitted to the University of Surrey for the award of the degree of Doctor of Philosophy.
SUMMARY OF CURRENT UK LEGISLATION AND GUIDELINES
SUMMARY OF CURRENT UK LEGISLATION AND GUIDELINES Legislation There are two sets of regulations in the UK governing the use of ionizing radiation. They both form part of The Health and Safety at Work Act
HITACHI Proton Beam Therapy System
HITACHI Proton Beam Therapy System Masumi Umezawa, M.S. Hitachi, Ltd., Hitachi Research Laboratory HITACHI Proton Beam Therapy System Contents 1. Overview of HITACHI 2. HITACHI Proton Beam Therapy and
Baylor Radiosurgery Center
Radiosurgery Center Baylor Radiosurgery Center Sophisticated Radiosurgery for both Brain and Body University Medical Center at Dallas Radiosurgery Center 3500 Gaston Avenue Hoblitzelle Hospital, First
33-10-06-03. General requirements. 1. Administrative Controls.
33-10-06-03. General requirements. 1. Administrative Controls. a. Registrant. The registrant shall be responsible for directing the operation of the x-ray systems which have been registered with the department.
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS HOW DOES RADIATION THERAPY WORK? Cancer is the unrestrained growth of abnormal cells within the body. Radiation therapy kills both
DOSES TO EYES AND EXTREMITIES OF MEDICAL STAFF DURING INTERVENTIONAL RADIOLOGY PROCEDURES
DOSES TO EYES AND EXTREMITIES OF MEDICAL STAFF DURING INTERVENTIONAL RADIOLOGY PROCEDURES Ausra Urboniene, Birute Griciene Lithuania Introduction Medical staff during interventional radiology procedures
2/28/2011. MIPPA overview and CMS requirements. CT accreditation. Today s agenda. About MIPPA. Computed Tomography
Today s agenda Computed Tomography Presented by: Dina Hernandez, BSRT, RT (R), CT, QM Krista Bush, RT, MBA Leonard Lucey, JD ACR Quality & Safety MIPPA overview and CMS requirements CT accreditation How
There must be an appropriate administrative structure for each residency program.
Specific Standards of Accreditation for Residency Programs in Radiation Oncology 2015 VERSION 3.0 INTRODUCTION The purpose of this document is to provide program directors and surveyors with an interpretation
Quality Control and Maintenance Programs
Quality Control and Maintenance Programs Cari Borrás, D.Sc., FACR, FAAPM Visiting Professor DOIN-DEN / UFPE Recife, Pernambuco, Brazil Co-Chair, IUPESM Health Technology Task Group 1 Medical Imaging Equipment
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard
Required RS Training Info
C-arm Radiation Safety at Tufts Required RS Training Info What are annual rad. dose limits? Who is our regulator? What should you do in an emergency? Are there health effects of radiation? C-arm beam awareness
5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION
5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2.1 Task The bremsstrahlung produced by the X-ray tube has a continuous spectrum, limited by the set and spreads
The Challenge of CT Dose Records
The Challenge of CT Dose Records Kimberly Applegate, MD, MS, FACR Professor of Radiology and Pediatrics Emory University *financial disclosures: -Springer Textbook contracts -AIM advisory board for patient
Acknowledgement. Diagnostic X-Ray Shielding. Nomenclature for Radiation Design Criteria. Shielding Design Goal (Air Kerma):
Diagnostic X-Ray Shielding Multi-Slice CT Scanners Using NCRP 47 Methodology Melissa C. Martin, M.S., FAAPM, FACR Therapy Physics Inc., Bellflower, CA AAPM Annual Meeting, Orlando, FL Refresher Course
How To Calculate A Patient Dose In Ct
Restricted Commercial Contract Report EC Contract No.: FIGM-CT-2000-20078 Deliverable No. D5 (Work Package 5) NRPB-PE/1/2004 Assessment of Patient Dose in CT P C Shrimpton NRPB-PE/1/2004 Assessment of
Current Status and Future Direction of Proton Beam Therapy
Current Status and Future Direction of Proton Beam Therapy National Cancer Center Hospital East Division of Radiation Oncology and Particle Therapy Tetsuo Akimoto Comparison of status of particle therapy
Role of the Medical Physicist in Clinical Implementation of Breast Tomosynthesis
Role of the Medical Physicist in Clinical Implementation of Breast Tomosynthesis Bob Liu, Ph.D. Department of Radiology Massachusetts General Hospital And Harvard Medical School Digital Breast Tomosynthesis
Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate
Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_the_prostate
Topic 2. Physical bases of ID (1) Bases of ultrasonography. Ultrasound (US). The Doppler effect. Interventionist ultrasonography.
SUBJECT GENERAL RADIOLOGY AND PHYSICAL MEDICINE CREDITS Total 6.5 Theory 3 Practical 3.5 GENERAL OBJECTIVES As part of the syllabus of the Faculty of Medicine, Radiology and Physical Medicine deals with
QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET
Centers for Quantitative Imaging Excellence (CQIE) LEARNING MODULE QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET American College of Radiology Clinical Research Center v.1 Centers for Quantitative
Patient Dose Tracking for Imaging Studies. David E. Hintenlang, Ph.D., DABR University of Florida
Patient Dose Tracking for Imaging Studies David E. Hintenlang, Ph.D., DABR University of Florida Conflict of Interest Statement No affiliation or financial interests in any of the commercial products or
Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients
대한방사선종양학회지 2005;23(3):169~175 Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients Department of Radiation Oncology, College of Medicine, Ewha Womans University
Low-dose CT for Pulmonary Embolism
Low-dose CT for Pulmonary Embolism Gautham Gautham P. P. Reddy, Reddy, MD, MD, MPH MPH University University of of Washington Washington Introduction Introduction CT CT accounts accounts for for > 50%
Oncentra Brachy Comprehensive treatment planning for brachytherapy. Time to focus on what counts
Oncentra Brachy Comprehensive treatment planning for brachytherapy Time to focus on what counts Time to focus on what counts In contemporary brachytherapy, the medical physicist needs to process an increasing
Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13
Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer
SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS
Department of Health and Human services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY MEDICAL DIAGNOSTIC (MAMMOGRAPHY) SECTION
