Practice Final Math 122 Spring 12 Instructor: Jeff Lang



Similar documents
L 2 : x = s + 1, y = s, z = 4s Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Solutions for Review Problems

Section 12.6: Directional Derivatives and the Gradient Vector

1 3 4 = 8i + 20j 13k. x + w. y + w

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

This makes sense. t /t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

Math 241, Exam 1 Information.

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

MATH 132: CALCULUS II SYLLABUS

Name: ID: Discussion Section:

Solutions to Homework 10

Surface Normals and Tangent Planes

F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)

Exam 1 Sample Question SOLUTIONS. y = 2x

Solutions to old Exam 1 problems

FINAL EXAM SOLUTIONS Math 21a, Spring 03

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

( 1) = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

Review Sheet for Test 1

Solutions to Practice Problems for Test 4

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

AP Calculus BC 2004 Scoring Guidelines

4.2. LINE INTEGRALS ; z = t. ; y = sin

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

2008 AP Calculus AB Multiple Choice Exam

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 251 CALCULUS III

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., July Derive 5: The Easiest... Just Got Better!

Chapter 17. Review. 1. Vector Fields (Section 17.1)

If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

AP Calculus AB 2003 Scoring Guidelines Form B

The Mathematics Diagnostic Test

Derive 5: The Easiest... Just Got Better!

Mark Howell Gonzaga High School, Washington, D.C.

Math 1B, lecture 5: area and volume

Notes on Elastic and Inelastic Collisions

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Solutions - Homework sections

Two vectors are equal if they have the same length and direction. They do not

The Math Circle, Spring 2004

Math 53 Worksheet Solutions- Minmax and Lagrange

Number Sense and Operations

AP Calculus BC 2006 Free-Response Questions

Section 1.1. Introduction to R n

Fundamental Theorems of Vector Calculus

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

A vector is a directed line segment used to represent a vector quantity.

Steady Heat Conduction

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

Figure 2.1: Center of mass of four points.

Mathematics I, II and III (9465, 9470, and 9475)

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Estimated Pre Calculus Pacing Timeline

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Geometry Course Summary Department: Math. Semester 1

MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev

Useful Mathematical Symbols

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.

AP Calculus AB 2004 Free-Response Questions

PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall Sept. 30, 2004 ANSWERS

CHAPTER FIVE. 5. Equations of Lines in R 3

Mark Howell Gonzaga High School, Washington, D.C.

Line and surface integrals: Solutions

Calculus AB 2014 Scoring Guidelines

Review of Vector Analysis in Cartesian Coordinates

13.4 THE CROSS PRODUCT

Curriculum Map by Block Geometry Mapping for Math Block Testing August 20 to August 24 Review concepts from previous grades.

Math 2443, Section 16.3

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall Oct. 1, 2004 ANSWERS

Chapter 22: Electric Flux and Gauss s Law

Vector Calculus Solutions to Sample Final Examination #1

Lectures 5-6: Taylor Series

2 Integrating Both Sides

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions

Taylor and Maclaurin Series

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

Differentiation of vectors

Section 9.5: Equations of Lines and Planes

13.5. Click here for answers. Click here for solutions. CURL AND DIVERGENCE. 17. F x, y, z x i y j x k. 2. F x, y, z x 2z i x y z j x 2y k

Solutions to Homework 5

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

AP Calculus BC 2001 Free-Response Questions

Math 113 HW #7 Solutions

AP CALCULUS AB 2008 SCORING GUIDELINES

299ReviewProblemSolutions.nb 1. Review Problems. Final Exam: Wednesday, 12/16/2009 1:30PM. Mathematica 6.0 Initializations

Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Series and Parallel Circuits

Microeconomic Theory: Basic Math Concepts

Concepts in Calculus III

SAT Subject Math Level 2 Facts & Formulas

Transcription:

Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6 n. A) ln 6 B) C) e 6 D) does not exist 3. Find the limit of the sequence a n = n! 6 n +8 n. A) B) C) e 8 D) does not exist. Find a formula for the nth partial sum of the series it to find the series sum if the series converges. 6 9n +n+ n= and use A) 6n 5(3n+5) ; 5 B) 6n 5n+5 ; 5 C) 6n 5(n+) ; 6 5 D) 6n 5n+ ; 6 5 5. Find the sum of the telescoping series e n e n 3, if it exists. n= A) e 5 B) e 3 C) e D) does not exist 6. Find the sum of the telescoping series ( ln n= n+ ) ln ( n+ A) ln B) ln 3 C) D) does not exist ), if it exists. 7. Find the sum of the geometric series n= A) 9 7 B) 7 7 C) 8 D) ( ) n 9 8 n. 8. Use the integral test to determine whether the series n e /n converges or diverges. A) converge B) diverge n= 9) Determine whether the series ln ( e / n) converges or diverges. n=

A) converge B) diverge. Use the ratio test to determine if the series n= 5(n!) (n)! converges or diverges. A) converge B) diverge. Use the comparison test to determine if the series ( n n 5n+) converges or diverges. A) converge B) diverge n=. Use the limit comparison test to determine whether the series 9 converges or diverges. n 3 ln n+ n= A) converge B) diverge 3. Determine whether the alternating series ( ( ) n ln diverges. n= A) converge B) diverge 6n+ 6n+3. Determine whether the alternating series ( ) n ( n n + ) converges absolutely, conditionally, or diverges. n= ) converges or A) converge absolutely B) diverges C) converges conditionally 5. Estimate the magnitude of the error involved in using the sum of the first four terms to estimate the sum of the entire series n= ( ) n+ (.) n+ n+. A) 5.69 8 B) 3. C).5 8 D).86 9 6. Find the radius of convergence of the power series A) 8 B) C) 9 D) n= 7. Find the radius of convergence of the power series n= (x 5) n 9 n n. (x 5) n 9 n n!.

A) 8 B) C) D) 9 8. Find the interval of convergence of the power series n= ( ) n (x 5) n (n+)6 n. A) x B) < x C) x 6 D) x < 6 9. Find the first for tems of the McLaurin series for f (x) = ln ( + x). A) x x! + x3 3! x x! + B) x + + x3 3 + x C) x x + x3 3 x. Find the Taylor series sin x at x = π. + x + D) x +! + x3 3! + x! + A) ( ( ) ( ) x π + x π ( ) ) 6 x π 3 + B) ( + ( ) ( ) x π x π ( ) ) 3 x π 3 + C) ( ( ) ( ) + x π 6 x π ( ) ) x π 3 + D) ( + ( ) ( ) x π x π ( ) ) 6 x π 3 + E) None of the above. Find the angle between the two planes x + 3y 3z = and x + y 5z =. A).9 B).3 C).57 D).8. Which of the following vectors is parallel to the two planes x + 3y z = and x + y + z = 8? A) i + 3 j 5 k B) i 3 j 5 k C) i + 3 j 6 k D) i 3 j 6 k 3. Find parametric equations of the line of intersection of the two planes x + y + z = and x y + z =. A) x = t +, y = t, z = 3t B) x = t +, y = t, z = 3t C) x = t, y = 3 + t, z = 5 3t D) x = + t, y = t, z = 3 + 3t. Find the point of intersection of the line x x + y + z =. = y+ = z and the plane 3

A) (,, ) B) (,, ) C) ( 9,, ) D) (,, ) 5. Find symmetric equations of the line perpendicular to the plane 5x + y + z = and passing through the point (, 3, ). A) x+ = y + 3 = z+ 5 B) x+ 5 = y + 3 = z+ C) x 5 = y 3 = z D) x 5 = y 3 = z 6. Which of the vectors below is tangent to the curve r (t) = cos t i + sin t j + e t k at t =? A) j k B) j + k D) All of the above C) j k 7. Calculate the arc length of the curve r (t) = t i + t sin t j + t cos t k ; t. A) 5 B) C) D) 6 8. Find the acceleration at t = for r (t) = ( t t 3) i + 5t j + ( t 3 ln t ) k. A) i + k B) i + k C) 6 i + 6 k D) i + 5 j + k x 9. Find lim +y + (x,y)(,) x 6xy+7. A) B) 7 C) 7 D) No limit 3. Find lim x+y. (x,y)(,) x +y A) B) No limit C) 7 D) - 3. At what points is the function f (x, y) = xy x continuous? A) All (x, y) such that xy > and x B) All (x, y) such that x i y and x > C) All (x, y) such that x D) All (x, y) 3. Find all first order partial derivatives of the function f (x, y) = x ln (xy).

A) f f x = + ln (xy) ; y = x y C) f f x = x + ln (xy) ; y = x y B) f f x = ln (xy) ; y = x y D) f x = x + x y ; f y = y 33. Find all second order partial derivatives of the function f (x, y) = xye y. A) f x B) f x C) f x D) f x = ye y ; f y = xye y ( y 6 ) ; = ; f y = xye y ( y 3 ) ; = ye y ; f y = xye y ( y ) ; = ; f y = xye y ( y 3 ) ; 3. Find a chain rule formula for w z = k(r, s, t). f x y = f y x = ( ) y e y f x y = f y x = ( ) y e y f x y = f y x = ( ) y e y f x y = f y x = ( ) y e y if w = f(x, y, z), x = g(r, s), y = h(t), A) w C) w = w dx dt + w z = w dy y dt + w z z B) w D) w = w z z = dy dt + z 35. Compute the gradient of f(x, y, z) = ln ( x 5y + 7z ) at ( 5, 5, 5). A) 5 i + 3 j B) 5 i + 3 j 5 C) i + 3 j 5 k D) i + 3 j k k k 36. Find the derivative of f (x, y, z) = 3xy 3 z at the point ( 3, 7, 9) in the direction of v = i + j k. A) 53, B) 885, 735 C) 78, 588 D) 35, 5 37. Find the direction in which the function f (x, y) = xe y ln x is decreasing most rapidly at the point (, ). A) 7 i + 7 j B) 7 i 7 j C) 7 i 7 j D) 7 i 38. Find the derivative of the function f (x, y) = arctan ( y x) at the point ( 8, 8) in the direction in which the function increases most rapidly. A) 3 B) 6 C) D) 3 6 5

39. A simple electrical circuit consists of a resistor connected between the terminals of a battery. The voltage V (in volts) is dropping at the rate of. volts per second as the battery wears out. At the same time the resistance R (in ohms) is increasing at the rate of ohms per second as the resistor heats up. The power P (in watts) disippated by the circuit is given by P = V R. How much is the power changing when R = 5 and V =? A).3 watts B).6 watts C).3 watts D).6 watts. Find an equation for the tangent plane to the surface ln z = 8x + 3y at the point (,, ). A) 6x + 6y z = 9 B) 6x + 6y + z = C) 6x 6y + z = 3 D) 6x 6y z =. Find all extreme values of the function f(x, y) = 5x y + 7xy and identify each as a local maximum, local minimum, or saddle point. A) f ( 7, ) 5 = 7 5, local minimum B) f (35, 35) = 5, 5, local max C) f ( 5, ) 7 = 35, local minimum D) f (, ) =, saddle point. Find all extreme values of the function f(x, y) = x 3 + y 3 3x 8y 8 and identify each as a local maximum, local minimum, or saddle point. A) f (, 6) =, local minimum; f (, 6) = 576, saddle point; f (, 6) = 56, saddle point; f (, 6) =, local maximum B) f (, 6) = 576, saddle point; f (, 6) = 56, saddle point C) f (, 6) =, local maximum D) f (, 6) =, local minimum; f (, 6) =, local maximum 3. Find the absolute maximum and minimum of the function f (x, y) = 7x + y on the trapezoidal region with vertices (, ) (, ), (, ), (, ). A) Absolute maximum: at (, ); absolute minimum: 7 at (, ) B) Absolute maximum: 8 at (, ); absolute minimum: at (, ) C) Absolute maximum: at (, ); absolute minimum: at (, ) D) Absolute maximum: at (, ); absolute minimum: 7 at (, ). Use Lagrange multipliers to find the maximum and minimum values of f (x, y, z) = x + y z subject to the constraint x + y + z = 9. A) Maximum: 8 at (,, ); minimum -8 at (,, ) B) Maximum: 9 at (,, ); minimum -9 at (,, ) C) Maximum: at (,, ); minimum - at (,, ) D) Maximum: at (,, 3); minimum - at (,, 3) 6

5. Find the point on the plane x + y z = that is nearest the origin. A) (,, ) B) (, 8, ) C) (,, ) D) (,, ) 6. Evaluate π 5π (sin x + cos y) dxdy A) π B) 9π C) 5π D) 8π 7. Write an integral equivalent to ln 8 ln integration reversed. A) 8 ln x ln 8 ln 7y dy dx B) 8 C) 8 ln x ln 7y dy dx D) 8 ln 8 e y 7y dx dy but with the order of ln x ln 8 7y dy dx ln x 7y dy dx ln 8 8. Write an integral equivalent to 6 integration reversed. 36 8y dx dy but with the order of y A) 36 x 8y dy dx B) 36 x 8y dy dx 6 C) 6 x 8y dy dx D) 6 x 6 8y dy dx 9. Express the area of the region bounded by x = y and the line y = x as a double integral. A) y+8 dx dy B) y C) 5. Evaluate ln y+8 dx dy D) e y dx dy. e y y+8 y dx dy y+8 dx dy A) 8 B) C) 8 D) 5. Integrate f (x, y) = ln x over the region bounded by the x axis, the line x = 3, and the curve y = ln x. A) B) C) 3 D) 5. Find the volume of the region bounded by the coordinate planes, the parabolic cylinder z = x, and the plane y = 5. 7

A) 8 3 B) 3 C) 8 D) 6 53. Evaluate ln 8 ln 8 dx dy by reversing the order of integration. y/ ex A) 36 B) 35 C) D) 5 5. Change 6 dy dx to polar coordinates and evaluate. 36 x + x +y A) π(6+ln 7) π(6 ln 7) B) 55. Find the area of the region enclosed by r = 9 sin θ. π(6 ln 7) π(6+ln 7) C) D) A) 7 π B) 8 π C) 8 8 π D) 8 π 56. Write a triple integral in the order dz dy dx for the volume of the solid enclosed by the parabaloids z = x y and z = x + y. A) x x y dz dy dx B) x x x +y x y dz dy dx x x +y C) x x x y x +y dz dy dx D) 57. Write cylindrical coordinates. A) π C) π x x y x x +y dz dy dx as an equivalent integral in r r dz dr dθ B) π r 5 r r dz dr dθ D) π/ r x x y dz dy dx x x +y r r dz dr dθ r r r r dz dr dθ 58. Set up a triple integral for the volume of the solid in the first octant inside the cone ϕ = π 3 and between the spheres ρ = and ρ = 7. A) π/ π/3 C) π π/ 7 ρ sin ϕ dρ dϕ dθ B) π/ π/ π/3 7 ρ sin ϕ dρ dϕ dθ D) π/ π/3 7 π/ π/3 ρ sin ϕ dρ dϕ dθ 7 ρ sin ϕ dρ dϕ dθ 59. Use cylindrical coordinates to find the volume of the solid bounded below by the xy-plane, laterally by the cylinder r = sin θ, and above by the plane z = 7 x. A) 9π B) 9 π C) 7 π D) 7π 8

6. Find the mass of the solid in the first octant between the spheres x + y + z = 6 and x + y + z = if the density at any point is inversely proportional to the distance from the origin. A) 68kπ B) 8kπ C) k D) kπ Answer Key. C. B 3. D. A 5. B 6. D 7. C 8. A 9. B. A. A. B 3. A. C 5. D 6. C 7. D 8. B 9. C. D. A. B 3. C. D 5. D 6. D 7. C 8. C 9. B 3. B 3. A 3. A 33. D 3. C 35. B 36. A 37. C 9

38. B 39. A. D. D. A 3. C. B 5. B 6. D 7. C 8. A 9. B 5. C 5. D 5. A 53. B 5. A 55. D 56. C 57. A 58. B 59. D 6. C