Polyhedron A polyhedron is a solid that is bounded by polygons that enclose a single region of space.

Similar documents
12 Surface Area and Volume

SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

12 Surface Area and Volume

SURFACE AREA AND VOLUME

Area of Parallelograms, Triangles, and Trapezoids (pages )

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

Area of Parallelograms (pages )

of surface, , , of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Shape Dictionary YR to Y6

2006 Geometry Form A Page 1

Area of a triangle: The area of a triangle can be found with the following formula: in

Geometry and Measurement

3D shapes. Level A. 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite. 2. What is another name for 3-D shapes?

MENSURATION. Definition

Geometry Notes PERIMETER AND AREA

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Activity Set 4. Trainer Guide

Geometry Unit 6 Areas and Perimeters

Conjectures. Chapter 2. Chapter 3

Angles that are between parallel lines, but on opposite sides of a transversal.

Platonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples:

SOLIDS, NETS, AND CROSS SECTIONS

Conjectures for Geometry for Math 70 By I. L. Tse

Algebra Geometry Glossary. 90 angle

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

Solids. Objective A: Volume of a Solids

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

GEOMETRY CONCEPT MAP. Suggested Sequence:

Chapter 8 Geometry We will discuss following concepts in this chapter.

ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.

Geometry Notes VOLUME AND SURFACE AREA

Surface Area and Volume Cylinders, Cones, and Spheres

2nd Semester Geometry Final Exam Review

Geometry Course Summary Department: Math. Semester 1

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

Number Sense and Operations

Chapter 4: Area, Perimeter, and Volume. Geometry Assessments

Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, :30 to 11:30 a.m., only.

Florida Geometry EOC Assessment Study Guide

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

B = = 84 in2. Since h = 20 in then the total volume is. V = = 1680 in 3

Calculating Area, Perimeter and Volume

WEIGHTS AND MEASURES. Linear Measure. 1 Foot12 inches. 1 Yard 3 feet - 36 inches. 1 Rod 5 1/2 yards /2 feet

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.

1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

New York State Student Learning Objective: Regents Geometry

Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?

Area is a measure of how much space is occupied by a figure. 1cm 1cm

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Finding Volume of Rectangular Prisms

Teaching Guidelines. Knowledge and Skills: Can specify defining characteristics of common polygons

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, :30 to 11:30 a.m., only.

The GED math test gives you a page of math formulas that

1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?

GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book

Area. Area Overview. Define: Area:

Pizza! Pizza! Assessment

Unit 3: Circles and Volume

Perimeter, Area, and Volume

CAMI Education linked to CAPS: Mathematics

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement

Illinois State Standards Alignments Grades Three through Eleven

12-1 Representations of Three-Dimensional Figures

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Perimeter is the length of the boundary of a two dimensional figure.

Discovering Math: Exploring Geometry Teacher s Guide

Filling and Wrapping: Homework Examples from ACE

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

GEOMETRY COMMON CORE STANDARDS

How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.

Quick Reference ebook

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Geometry Final Exam Review Worksheet

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Comprehensive Benchmark Assessment Series

Geometry Regents Review

2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship

McDougal Littell California:

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

Curriculum Map by Block Geometry Mapping for Math Block Testing August 20 to August 24 Review concepts from previous grades.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, :15 a.m. to 12:15 p.m.

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Functional Math II. Information CourseTitle. Types of Instruction

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, :15 a.m. to 12:15 p.m.

YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain

Lesson 9.1 The Theorem of Pythagoras

ME 111: Engineering Drawing

Definitions, Postulates and Theorems

9 Area, Perimeter and Volume

Chapter 6 Notes: Circles

alternate interior angles

Lateral and Surface Area of Right Prisms

Transcription:

12.1 Exploring Solids Goals p Use properties of polyhedra. p Use Euler s Theorem. VOCABULARY Polyhedron A polyhedron is a solid that is bounded by polygons that enclose a single region of space. Face The faces of a polyhedron are polygons. Edge An edge of a polyhedron is a line segment formed by the intersection of two faces of the polyhedron. Vertex A vertex of a polyhedron is a point where three or more edges of the polyhedron meet. Regular polyhedron A regular polyhedron is a polyhedron whose faces are all congruent regular polygons. Convex polyhedron A convex polyhedron is a polyhedron such that any two points on its surface can be connected by a line segment that lies entirely inside or on the polyhedron. Cross section A cross section is the intersection of a plane and a solid. Platonic solids A Platonic solid is one of five regular polyhedra: a regular tetrahedron, a cube, a regular octahedron, a regular dodecahedron, and a regular icosahedron. These solids are named after Plato, a Greek mathematician and philosopher. Tetrahedron A tetrahedron is a polyhedron with four faces. Octahedron An octahedron is a polyhedron with eight faces. Dodecahedron A dodecahedron is a polyhedron with twelve faces. Icosahedron An icosahedron is a polyhedron with twenty faces. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 252

TYPES OF SOLIDS Of the five solids below, the prism and pyramid are polyhedra. The cylinder, sphere, and cone are not polyhedra. Prism Cylinder Pyramid Sphere Cone Example 1 Identifying Polyhedra Decide whether the solid is a polyhedron. If so, count the number of faces, vertices, and edges of the polyhedron. a. b. c. a. This is a polyhedron. It has 6 faces, 8 vertices, and 12 edges. b. This is a polyhedron. It has 8 faces, 12 vertices, and 18 edges. c. This is not a polyhedron. Some of the faces are not polygons. Example 2 Classifying Polyhedra Is the polyhedron convex? Is it regular? a. b. c. convex, regular convex, nonconvex, nonregular nonregular Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 253

THEOREM 12.1: EULER S THEOREM The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula F V E 2. Example 3 Using Euler s Theorem The solid has 10 faces: 8 trapezoids and 2 octagons. How many vertices does the solid have? On their own, 8 trapezoids and 2 octagons have 8( 4 ) 2( 8 ) 48 sides. In the solid, each side is shared by exactly two polygons. So the number of edges is 24. Use Euler s Theorem to find the number of vertices. F V E 2 Write Euler s Theorem. 10 V 24 2 Substitute. V 16 Solve for V. Answer The solid has 16 vertices. Checkpoint Is the solid a polyhedron? If so, is it convex? Is it regular? 1. 2. 3. Yes, convex; No Yes, nonconvex; nonregular nonregular 4. Critical Thinking Is it possible for a polyhedron to have 16 faces, 34 vertices, and 50 edges? Explain. No; From Euler s Theorem, the number of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula F V E 2. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 254

12.2 Surface Area of Prisms and Cylinders Goal p Find the surface area of a prism and of a cylinder. VOCABULARY Prism A prism is a polyhedron with two congruent faces, called bases, that lie in parallel planes. The other faces, called lateral faces, are parallelograms formed by connecting the corresponding vertices of the bases. The segments connecting these vertices are lateral edges. Right prism In a right prism, each lateral edge is perpendicular to both bases. Oblique prisms Oblique prisms are prisms that have lateral edges that are not perpendicular to the bases. The length of the oblique lateral edges is the slant height of the prism. Surface area of a polyhedron The surface area of a polyhedron is the sum of the areas of its faces. Lateral area of a polyhedron The lateral area of a polyhedron is the sum of the areas of its lateral faces. Net A net is a two-dimensional representation of all of the faces of a polyhedron. Cylinder A cylinder is a solid with congruent circular bases that lie in parallel planes. The altitude, or height, of a cylinder is the perpendicular distance between its bases. The radius of the base is also called the radius of the cylinder. Right cylinder A cylinder such that the segment joining the centers of the bases is perpendicular to the bases Lateral area of a cylinder The lateral area of a cylinder is the area of its curved surface. The lateral area is equal to the product of the circumference and the height, which is 2πrh. Surface area of a cylinder The sum of the lateral area and the areas of the two bases Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 255

THEOREM 12.2: SURFACE AREA OF A RIGHT PRISM The surface area S of a right prism can be found using the formula S 2B Ph, where B is the area of a base, P is the perimeter of a base, and h is the height. Example 1 Using Theorem 12.2 Find the surface area of the right prism. Each base is an equilateral triangle with a side length, s, of 6 inches. Using the formula for the area of an equilateral triangle, the area of each base is 6 in. 6 in. 6 in. 8 in. B 1 4 3 (s2 ) 1 4 3 ( 6 2 ) 9 3 in. 2 The perimeter of each base is P 18 in. and the height is h 8 in. Answer So, the surface area is S 2B Ph 2( 9 3 ) 18 ( 8 ) 175 in. 2 6 in. 6 in. 6 in. Checkpoint Find the surface area of the right prism. 1. 5 m 11 m 4 m 238 m 2 Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 256

THEOREM 12.3: SURFACE AREA OF A RIGHT CYLINDER The surface area S of a right cylinder is S 2B Ch 2πr 2 2πrh, where B is the area of a base, C is the circumference of a base, r is the radius of a base, and h is the height. h r B r 2 C 2 r Example 2 Finding the Surface Area of a Cylinder Find the surface area of the right cylinder. Each base has a radius of 4 meters, and the cylinder has a height of 5 meters. S 2πr 2 2πrh 2π( 4 ) 2 2π( 4 )( 5 ) 32 π 40 π 72 π 226.19 Formula for surface area of a cylinder Substitute. Simplify. Add. Use a calculator. Answer The surface area is about 226 square meters. 5 m 4 m 2. Checkpoint Find the surface area of the right cylinder. Round your result to two decimal places. 9 ft 6 ft 565.49 ft 2 Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 257

12.3 Surface Area of Pyramids and Cones Goal p Find the surface area of a pyramid and of a cone. VOCABULARY Pyramid A pyramid is a polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex. The intersection of two lateral faces is a lateral edge. The intersection of the base and a lateral face is a base edge. The altitude, or height, of the pyramid is the perpendicular distance between the base and the vertex. Regular pyramid A regular pyramid has a regular polygon for a base and its height meets the base at its center. The slant height of a regular pyramid is the altitude of any lateral face. A nonregular pyramid does not have a slant height. Circular cone or cone A circular cone, or cone, has a circular base and a vertex that is not in the same plane as the base. The altitude, or height, is the perpendicular distance between the vertex and the base. Right cone In a right cone, the height meets the base at its center and the slant height is the distance between the vertex and a point on the base edge. Lateral surface of a cone The lateral surface of a cone consists of all segments that connect the vertex with points on the base edge. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 258

A regular pyramid is considered a regular polyhedron only if all its faces, including the base, are congruent. So, the only pyramid that is a regular polyhedron is the regular triangular pyramid, or tetrahedron. Example 1 Finding the Area of a Lateral Face Find the area of each lateral face of the regular pyramid shown at the right. To find the slant height of the pyramid, use the Pythagorean Theorem. (Slant height) 2 h 2 1 2 s 2 h 97 m s 90 m Write formula. slant height 1 s 2 (Slant height) 2 97 2 45 2 Substitute. (Slant height) 2 11,434 Simplify. Slant height 11,43 4 Take the positive square root. Slant height 106.93 Use a calculator. Answer So, the area of each lateral face is 1 2 (base of lateral face)(slant height), or about 1 ( 90 )( 106.93 ), 2 which is about 4812 square meters. Checkpoint Complete the following exercise. 1. Find the area of a lateral face of the regular pyramid. Round the result to one decimal place. 40.4 in. 2 h 11 in. slant height s 7 in. 1 s 2 Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 259

THEOREM 12.4: SURFACE AREA OF A REGULAR PYRAMID The surface area S of a regular pyramid is S B 1 Pl,where 2 B is the area of the base, P is the perimeter of the base, and l is the slant height. Example 2 Finding the Surface Area of a Pyramid To find the surface area of the regular pyramid shown, start by finding the area of the base. Use the formula for the area of a regular polygon, 1 2 (apothem)(perimeter). A diagram of the base is shown at the right. After substituting, the area of the base is 1 (4 3 )(6 p 8 ), or 96 3 square inches. 2 Now you can find the surface area, using 96 3 for the area of the base, B. 8 in. 8 in. 18 in. 4 3 in. 4 3 in. S B 1 2 Pl 96 3 1 ( 48 )( 18 ) 2 Substitute. Write formula. 96 3 432 Simplify. 598.3 Use a calculator. Answer So, the surface area is about 598.3 square inches. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 260

THEOREM 12.5: SURFACE AREA OF A RIGHT CONE The surface area S of a right cone is S πr 2 πrl, where r is the radius of the base and l is the slant height. l r Example 3 Finding the Surface Area of a Right Cone To find the surface area of the right cone shown, use the formula for the surface area. S πr 2 πrl Write formula. π( 3 ) 2 π( 3 )( 5 ) Substitute. 9 π 15 π Simplify. 24 π Add. Answer The surface area is 24 π square meters, or about 75.4 square meters. 3 m 5 m Checkpoint Find the surface area of the solid. Round your result to two decimal places. 2. Regular pyramid 3. Right cone 30 mm 10 ft 6 ft 20 mm 1600 mm 2 301.60 ft 2 Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 261

12.4 Volume of Prisms and Cylinders Goals p Use volume postulates. p Find the volumes of prisms and cylinders. VOCABULARY Volume of a solid The volume of a solid is the number of cubic units contained in the solid s interior. POSTULATE 27: VOLUME OF A CUBE The volume of a cube is the cube of the length of its side, or V s 3. POSTULATE 28: VOLUME CONGRUENCE POSTULATE If two polyhedra are congruent, then they have the same volume. POSTULATE 29: VOLUME ADDITION POSTULATE The volume of a solid is the sum of the volumes of all its nonoverlapping parts. THEOREM 12.6: CAVALIERI S PRINCIPLE If two solids have the same height and the same cross-sectional area at every level, then they have the same volume. THEOREM 12.7: VOLUME OF A PRISM The volume V of a prism is V Bh,where B is the area of a base and h is the height. THEOREM 12.8: VOLUME OF A CYLINDER The volume V of a cylinder is V Bh πr 2 h, where B is the area of a base, h is the height, and r is the radius of a base. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 262

Example 1 Finding Volumes Find the volume of the right prism and the right cylinder. a. b. 3 ft 1 ft 5 m 2 ft 6 m a. The area B of the base is 1 2 ( 1 )( 3 ), or 3 2 ft2. Use h 2 to find the volume. V Bh 3 2 ( 2 ) 3 ft3 b. The area B of the base is π p 5 2,or 25 π m 2. Use h 6 to find the volume. V Bh 25 π( 6 ) 150 π 471.24 m 3 Checkpoint Find the volume of the solid. Round your result to two decimal places. 1. Right prism 2. Right cylinder 5 m 6 ft 11 m 4 m 9 ft 220 m 3 1017.88 ft 3 Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 263

Example 2 Using Volumes Use the measurements given to solve for x. a. Cube, b. Right cylinder, V 90 ft 3 V 1253 m 3 x ft x ft x ft x m 10 m a. A side length of the cube is x feet. V s 3 Formula for volume of cube 90 x 3 Substitute. 4.48 x Take the cube root. Answer So, the height, width, and length of the cube are about 4.48 feet. b. The area of the base is πx 2 square meters. V Bh Formula for volume of cylinder 1253 πx 2 ( 10 ) Substitute. 1253 10 πx 2 Rewrite. 1253 10 π x 2 Divide each side by 10 π. 39.88 x 2 Simplify. 6.32 x Find the positive square root. Answer So, the radius of the cylinder is about 6.32 meters. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 264

12.5 Volume of Pyramids and Cones Goal p Find the volume of pyramids and cones. THEOREM 12.9: VOLUME OF A PYRAMID The volume V of a pyramid is V 3 1 Bh, where h B is the area of the base and h is the height. B THEOREM 12.10: VOLUME OF A CONE The volume V of a cone is V 3 1 Bh 3 1 πr 2 h, where B is the area of the base, h is the height, and r is the radius of the base. B h r Example 1 Finding the Volume of a Pyramid Find the volume of the pyramid with the regular base. The base can be divided into six equilateral triangles. Using the formula for the area of an equilateral triangle, 1 4 3 p s2,the area of the base B can be found as follows: 10 in. 4 in. 6 p 1 4 3 p s2 6 p 1 4 3 p 4 2 24 3 in. 2 Use Theorem 12.9 to find the volume of the pyramid. V 3 1 Bh 3 1 ( 24 3 )( 10 ) 80 3 4 in. Answer The volume of the pyramid is 80 3, or about 138.6 cubic inches. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 265

Example 2 Finding the Volume of a Cone Find the volume of each cone. a. Right circular cone b. Oblique circular cone 16.8 mm 12 ft 9.5 mm 4.5 ft a. Use the formula for the volume of a cone. V 3 1 Bh Formula for volume of cone 3 1 (πr 2 )h Base area equals πr 2. 3 1 (π 9.5 2 ) 16.8 505.4 π Substitute. Simplify. Answer The volume of the cone is 505.4 π, or about 1588 cubic millimeters. b. Use the formula for the volume of a cone. V 3 1 Bh Formula for volume of cone 3 1 (πr 2 )h Base area equals πr 2. 3 1 (π 4.5 2 ) 12 81 π Substitute. Simplify. Answer The volume of the cone is 81 π, or about 254 cubic feet. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 266

Checkpoint Find the volume of the solid. Round your result to two decimal places. 1. Pyramid with regular base 2. Right circular cone 15 cm 10 ft 6 ft 9 cm 1052.22 cm 3 301.60 ft 3 Example 3 Using the Volume of a Cone Use the given measurements to solve for x. 8 m V 3 1 (πr 2 )h Formula for volume x Volume 135 m 3 1 135 (πx 2 )( 8 ) 3 Substitute. 405 8 πx 2 Multiply each side by 3. 16.11 x 2 Divide each side by 8π. 4.01 x Find positive square root. Answer The radius of the cone is about 4.01 meters. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 267

12.6 Surface Area and Volume of Spheres Goals p Find the surface area of a sphere. p Find the volume of a sphere. VOCABULARY Sphere A sphere is the locus of points in space that are a given distance from a point. The point is called the center of the sphere. Radius of a sphere A radius of a sphere is a segment from the center to a point on the sphere. Chord of a sphere A chord of a sphere is a segment whose endpoints are on the sphere. Diameter of a sphere A diameter is a chord that contains the center of the sphere. Great circle A great circle is the intersection of a sphere and a plane that contains the center of the sphere. Hemisphere Half of a sphere, formed when a great circle separates a sphere into two congruent halves THEOREM 12.11: SURFACE AREA OF A SPHERE The surface area S of a sphere with radius r is S 4πr 2. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 268

Example 1 Finding the Surface Area of a Sphere Find the surface area. When the radius doubles, does the surface area double? a. b. 3 cm 6 cm a. S 4πr 2 4π( 3 ) 2 36 π cm 2 b. S 4πr 2 4π( 6 ) 2 144 π cm 2 The surface area of the sphere in part (b) is four times greater than the surface area of the sphere in part (a) because 36 π p 4 144 π. Answer When the radius of a sphere doubles, the surface area does not double. Example 2 Using a Great Circle The circumference of a great circle of a sphere is 7.4π feet. What is the surface area of the sphere? Begin by finding the radius of the sphere. C 2πr Formula for circumference of circle 7.4π 2πr Substitute for C. 3.7 r Divide each side by 2π. Using a radius of 3.7 feet, the surface area is S 4πr 2 4π( 3.7 ) 2 54.76 π ft 2. Answer The surface area of the sphere is 54.76 π ft 2, or about 172 ft 2. THEOREM 12.12: VOLUME OF A SPHERE The volume V of a sphere with radius r is V 4 3 πr3. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 269

Example 3 Finding the Volume of a Sphere What is the radius of a sphere made from the cylinder of modeling clay shown? Assume the sphere has the same volume as the cylinder. To find the volume of the cylinder of modeling clay, use the formula for the volume of a cylinder. V πr 2 h π( 5 ) 2 ( 15 ) 375 π cm 3 To find the radius of the sphere, use the formula for the volume of a sphere and solve for r. Cylinder of modeling clay 5 cm 15 cm r Sphere made from cylinder of modeling clay V 4 3 πr3 Formula for volume of sphere 375 π 4 3 πr3 Substitute for V. 1125 π 4πr 3 Multiply each side by 3. 281.25 r 3 Divide each side by 4π. 6.55 r Use a calculator to take the cube root. Answer The radius of the sphere is about 6.55 centimeters. Checkpoint Find the surface area and volume of the sphere. Round your results to two decimal places. 1. 2. 5 ft 6.5 m 314.16 ft 2 ; 523.60 ft 3 530.93 m 2 ; 1150.35 m 3 Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 270

12.7 Similar Solids Goals p Find and use the scale factor of similar solids. p Use similar solids to solve real-life problems. VOCABULARY Similar solids Two solids with equal ratios of corresponding linear measures, such as heights or radii, are called similar solids. Example 1 Identifying Similar Solids Decide whether the two solids are similar. If so, compare the volumes of the solids. a. b. 5 5 8 3 3 6 a. The solids are not similar because the ratios of corresponding linear measures are not equal, as shown. lengths: 5 3 widths: 5 3 heights: 8 6 4 3 b. The solids are similar because the ratios of corresponding linear measures are equal, as shown. The solids have a scale factor of 2 : 1. 10 6 14 5 3 7 lengths: 1 0 2 5 1 widths: 6 3 2 1 heights: 1 4 7 2 1 The volume of the larger prism is V Bh 60 ( 14 ) 840. The volume of the smaller prism is V Bh 15 ( 7 ) 105. The ratio of side lengths is 2 : 1 and the ratio of volumes is 840 : 105,or 8 : 1. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 271

Checkpoint Decide whether the two solids are similar. 1. 2. 5 m 10 ft 4 ft 5 ft 5 m 7.5 m 15 m 3 ft not similar similar THEOREM 12.13: SIMILAR SOLIDS THEOREM If two similar solids have a scale factor of a : b, then corresponding areas have a ratio of a 2 : b 2, and corresponding volumes have a ratio of a 3 : b 3. Example 2 Using the Scale Factor of Similar Solids Cylinders A and B are similar with a scale factor of 2 : 5. Find the surface area and volume of cylinder B given that the surface area of cylinder A is 96π square feet and the volume of cylinder A is 128π cubic feet. Begin by using Theorem 12.13 to set up two proportions. Surface area of A a S urface area of B 2 b 2 A Volume of A a Volume of B 3 b 3 B 96π 4 128π 8 Surface area of B 2 5 Volu me of B 1 25 Surface area of B 600π Volume of B 2000π Answer The surface area of cylinder B is 600π square feet and the volume of cylinder B is 2000π cubic feet. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 272

Example 3 Finding the Scale Factor of Similar Solids The two cones are similar. Find the scale factor. Find the ratio of the two volumes. a 3 108π b 3 256π a 3 27 b 3 Simplify. 64 Write ratio of volumes. a b 3 Find the cube root. 4 V 108 cm 3 V 256 cm 3 Answer The two cones have a scale factor of 3 : 4. Example 4 Comparing Similar Solids Two punch bowls are similar with a scale factor of 2 : 3. The amount of concentrate to be added is proportional to the volume. How much concentrate does the smaller bowl require if the larger bowl requires 48 ounces? Using the scale factor, the ratio of the volume of the smaller punch bowl to the larger punch bowl is a 3 2 3 8 1 2 b 3. 3 3 7 3.4 The ratio of the volumes of the concentrates is about 1 : 3.4. The amount of concentrate for the smaller punch bowl can be found by multiplying the amount of concentrate for the larger punch bowl by 1 1 as follows: 48 14.1 ounces. 3.4 3.4 Answer The smaller bowl requires about 14.1 ounces of concentrate. Copyright McDougal Littell/Houghton Mifflin Company All rights reserved. Chapter 12 Geometry Notetaking Guide 273