Filling and Wrapping: Homework Examples from ACE
|
|
|
- Colin Lawrence
- 9 years ago
- Views:
Transcription
1 Filling and Wrapping: Homework Examples from ACE Investigation 1: Building Smart Boxes: Rectangular Prisms, ACE #3 Investigation 2: Polygonal Prisms, ACE #12 Investigation 3: Area and Circumference of Circles, ACE #11, 22 Investigation 4: Cylinders, Cones, and Spheres, ACE #13, 28 Investigation 1: Building Smart Boxes: Rectangular Prisms ACE #3 Suppose you plan to make a box that will hold exactly 40 one-inch cubes. a. Give the dimensions of all the possible boxes you can make. b. Which of the boxes described in part (a) has the least surface area? Explain. For this problem, students can visualize a box and decide how many cubes are on the base layer, and how many layers high the box is. Since we are talking about whole unit cubes we must look for factors of 40; one factor is the base layer and the other factor is the height. That is: base layer x height = 40. Also, length x width = area of base layer. There may be more than one choice for length and width for a given base layer. For example, we know that 5 x 8 = 40, so the base layer could have 5 cubes and the height could be 8 inches. If the base layer has 5 inch cubes then the length must be 5 inches and the width must be 1 inch (or vice versa). Or, since we also know that 10 x 4 = 40, the base layer could be 10 inch cubes and the height could be 4 inches. If the base layer has 10 inch cubes then the length might be 10 inches and the width 1 inch, or the length might be 5 inches and the width 2 inches. We can organize the dimensions of all the possible boxes in a table (L is length, W is width, H is height, V is volume, and SA is surface area, which we can calculate using the dimensions). Base L W H V SA etc. If we examine this table we will see that some of the boxes created are identical. L = 1, W = 4, H = 10 will be exactly the same box as L = 1, W = 10 and H = 4. There are only 6 unique arrangements. b. The 2 x 4 x 5 box has the least surface area. We can tell this is true since we already calculated the surface areas of all the possible boxes. But it s also the box closest to a cube, which would have the smallest surface area.
2 Investigation 2: Polygonal Prisms ACE #12 For Problem 2.1, Sheryl made paper prisms that were all 8.5 inches high. She traced the polygon bases on 1-inch grid paper to give a picture like the one shown below. Estimate the volume of each prism. First, a note: We know that each of the bases must have the same perimeter, because they were all made by folding the same piece of paper, which was 11 inches long. But that doesn t mean their areas are the same. This refers back to an idea from Covering and Surrounding equal perimeters do not imply equal areas. For every prism, the formula is volume = base area x height. We know from the given information that the height is 8.5 inches for each of these prisms, which makes sense because the problem instructed student to use an 8.5 x 11 inch piece of paper for each prism. This problem asks for estimates of the volumes, which requires students to estimate the base areas using the grid. Students can use a variety of strategies to estimate the areas of the bases. Here, we explain possible volumes using formulas for area, though students do not need to use these calculations. The square has sides of or 2.75 inches. Therefore, the base area = = square inches, and volume = = cubic inches. Each side of the triangle is or about 3.67 inches long. The height appears to be about 3.2 inches (students need to estimate this value, because they don t yet know how to use the Pythagorean Theorem.) Therefore, the base area = ( ) () (3.2) 5.87 square inches and volume = 49.9 cubic inches. The pentagonal base is made of a 2 x 2 square and 3 triangles surrounding the square.
3 The areas of the triangles can be approximated using a method from Covering and Surrounding, estimating the height and/or the base of the triangle. The sum of the areas of these triangles (0.5)(3.5)(1.25) + (0.5)(2)(0.75) + (0.5)(2)(0.75) square inches. So the base area square units and volume cubic inches. You can visualize this hexagon as being made of 6 small equilateral triangles with side lengths of. (See Shapes and Designs for more explanation about this.) Again, students will have to approximate the height of each of these as about 1.6 units, which we can estimate because the whole hexagon is a little over three inches tall. So the area of each small triangle is (0.5)( )(1.6) 1.47 square units. Therefore, the total base area 6(1.47) = 8.8 square units and the volume (8.8)(8.5) = 74.8 cubic units approx. Note: As the same 11 inches (on a side of paper) is folded to make more and more sides of a polygon, the base area increases and, therefore, the volume increases.
4 Investigation 3: Area and Circumference of Circles ACE #11 A pizzeria sells three different sizes of pizza. The small size has a radius of 4 inches, the medium size has a radius of 5 inches, and the large size has a radius of 6 inches. a. Copy and complete the table below. Explain how you found the areas of the pizzas. b. Jamar claims the area of a pizza is about 0.75 x (diameter) 2. Is he correct? Explain. a. Using the formula for area of a circle area = 3.14r 2 (here, is approximated to be 3.14) and the formula for circumference of a circle circumference = d, we get the following values: Pizza Size Diameter (in.) Radius (in.) Circumference (in.) Area (in. 2 ) Small (8) = (4 2 ) = Medium (10) = (5 2 ) = 78.5 Large (12) = (6 2 ) = b. Jamar s estimate is close, but will be a slight underestimate, since is a little more than 3. But = = ( )2 = 0.75d2. Students don t need to offer this sort of algebraic reasoning. It is okay to check a few cases to see if the numbers turn out the same or close.
5 Investigation 3: Area and Circumference of Circles ACE #22 A rectangular lawn has a perimeter of 36 meters and a circular exercise run has a circumference of 36 meters. Which shape will give Rico s dog more area to run? Explain. This question refers back to the idea in earlier investigations that two shapes with the same perimeter do not necessarily have the same area. Students discovered that when you compare rectangles, the more square a rectangle is (basically, the closer the ratio of sides is to 1:1) the more area it can enclose for a given perimeter. So in this case the best rectangle they can make is a 9 meter x 9 meter square. The perimeter of the square is = 36 meters, and the area is 9 2 = 81 square meters. Now we have to do some reasoning with the formula for the circumference of a circle: C = d. So 36 = d, and the diameter is 11.5 meters. The radius is about (11.5) = 5.75 meters. Now that we know the radius, we can figure the area of the circle: area = (5.75) square meters. Therefore, a circle with a circumference of 36 meters covers more area than a square with perimeter 36 meters!
6 Investigation 4: Cylinders, Cones, and Spheres ACE #13 The track and field club is planning a frozen yogurt sale to raise money. They need to buy containers to hold the yogurt. The two options are the cup and cone shown below. The two containers have the same cost. The club plans to charge $1.25 for a serving of yogurt. Which container should the club buy? Explain. Students have a formula for the volume of a cone; they found that a cone was the volume of a cylinder with the same base and height. The volume of the cylinder is: V = base area x height = (3 2 ) x cubic centimeters. So, the volume of the cone is. = cubic centimeters. The volume of the cylindrical cup is (2.5 2 )(4.5) = cubic centimeters. So, the cone is the better buy from the customers point of view you get more yogurt for the same $1.25. But, from the club s point of view, the cup holds less, so it will generate more profit customers pay the same but get less yogurt. The club should choose the cylindrical cup.
7 Investigation 4: Cylinders, Cones, and Spheres ACE #28 Chilly s Ice Cream Parlor is known for its root beer floats. The float is made by pouring root beer over 3 scoops of ice cream until the glass is filled inch from the top. A glass is in the shape of a cylinder with a radius of 1 inches and height of 8 inches. Each scoop of ice cream is a sphere with a radius of 1 inches. Will there be more ice cream or more root beer in the float? Explain. There are at least two different ways to think about this problem. One is to calculate the volume for the cylinder-shaped float and subtract the volume of the three spheres of ice cream using volume formulas. The other is to visualize and use the relationships between the cylinder and spheres. Each method is shown below. 1) Calculating volumes using formulas: The first 2 clues tell us that the total volume of the float is the volume of a cylinder with height 8 inches (since it s filled to inch from the top) and radius 1.25 inches. To find the volume of this cylinder: V = ( )(8) cubic inches. The third clue tells us that the volume of the ice cream is 3 times the volume of a sphere with radius 1.25 inches. Students should have already found out that the volume of a sphere is the volume of a cylinder with the same height and radius. The height of a sphere is the same as the diameter, which in this case is 2.5 inches. So each sphere of ice cream has volume times the volume of a cylinder with radius 1.25 and height 2.5. Using the formula for the volume of a cylinder: V = ( )()(1.252 )(2.5) 8.18 cubic inches. Three scoops of ice cream have a volume of (3)(8.18) = cubic inches. We can find the volume of the root beer by subtracting the volume of the ice cream from the total volume of the float. So the root beer volume is = cubic inches. Thus, there is more ice cream than root beer in the float. Alternative method: If one sphere of ice cream has the volume of a cylinder with the same radius and height, then three scoops will have the volume of 2 cylinders with same radius and height. Therefore, 3 scoops of ice cream have the same volume as 2 cylinders with radius 1.25 and height 2.5 inches, or the same as one cylinder with the same radius and double the height that is, radius 1.25 and height 5 inches. The float in the problem is a cylinder with radius 1.25 and height 8 inches! If 5 inches of this height is packed with ice cream, then only 3 inches space is left for the root beer (see the visual below). So this is another way to determine there is more ice cream than root beer in our float.
8
Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in
Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.
Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE
Geometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
B = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3
45 Volume Surface area measures the area of the two-dimensional boundary of a threedimensional figure; it is the area of the outside surface of a solid. Volume, on the other hand, is a measure of the space
Area is a measure of how much space is occupied by a figure. 1cm 1cm
Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number
SURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
Pizza! Pizza! Assessment
Pizza! Pizza! Assessment 1. A local pizza restaurant sends pizzas to the high school twelve to a carton. If the pizzas are one inch thick, what is the volume of the cylindrical shipping carton for the
Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of
Perimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book
GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18
Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY
PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY The Student Handout is page 11. Give this page to students as a separate sheet. Area of Circles and Squares Circumference and Perimeters Volume of Cylinders
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid
Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.
Area, Perimeter, Volume and Pythagorean Theorem Assessment
Area, Perimeter, Volume and Pythagorean Theorem Assessment Name: 1. Find the perimeter of a right triangle with legs measuring 10 inches and 24 inches a. 34 inches b. 60 inches c. 120 inches d. 240 inches
Surface Area Quick Review: CH 5
I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find
Solids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
Finding Volume of Rectangular Prisms
MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of three-dimensional composite shapes.
1. The volume of the object below is 186 cm 3. Calculate the Length of x. (a) 3.1 cm (b) 2.5 cm (c) 1.75 cm (d) 1.25 cm
Volume and Surface Area On the provincial exam students will need to use the formulas for volume and surface area of geometric solids to solve problems. These problems will not simply ask, Find the volume
The GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
Area & Volume. 1. Surface Area to Volume Ratio
1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.
Think About This Situation
Think About This Situation A popular game held at fairs or parties is the jelly bean guessing contest. Someone fills a jar or other large transparent container with a known quantity of jelly beans and
Chapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
2nd Semester Geometry Final Exam Review
Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular
Name: Date: Period: PIZZA! PIZZA! Area of Circles and Squares Circumference and Perimeters Volume of Cylinders and Rectangular Prisms Comparing Cost
Name: Date: Period: PIZZA! PIZZA! Area of Circles and Squares Circumference and Perimeters Volume of Cylinders and Rectangular Prisms Comparing Cost Lesson One Day One: Area and Cost A. Area of Pizza Triplets
Measurement. Volume It All Stacks Up. Activity:
Measurement Activity: TEKS: Overview: Materials: Grouping: Time: Volume It All Stacks Up (7.9) Measurement. The student solves application problems involving estimation and measurement. The student is
Area of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby
The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- Area = 1 2 D x d CIRCLE.
Revision - Areas Chapter 8 Volumes The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- SQUARE RECTANGE RHOMBUS KITE B dd d D D Area = 2 Area = x B
CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.
TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has
12 Surface Area and Volume
12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids
2. Complete the table to identify the effect tripling the radius of a cylinder s base has on its volume. Cylinder Height (cm) h
Name: Period: Date: K. Williams ID: A 8th Grade Chapter 14 TEST REVIEW 1. Determine the volume of the cylinder. Use 3.14 for. 2. Complete the table to identify the effect tripling the radius of a cylinder
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?
Student Name: Teacher: Date: District: Description: Miami-Dade County Public Schools Geometry Topic 7: 3-Dimensional Shapes 1. A plane passes through the apex (top point) of a cone and then through its
Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)
Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.
YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS - SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! YOU MUST
Calculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
Math 115 Extra Problems for 5.5
Math 115 Extra Problems for 5.5 1. The sum of two positive numbers is 48. What is the smallest possible value of the sum of their squares? Solution. Let x and y denote the two numbers, so that x + y 48.
VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
MENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.
8. Volumes of Cones How can you find the volume of a cone? You already know how the volume of a pyramid relates to the volume of a prism. In this activity, you will discover how the volume of a cone relates
7.2 Quadratic Equations
476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic
Chapter 4: Area, Perimeter, and Volume. Geometry Assessments
Chapter 4: Area, Perimeter, and Volume Geometry Assessments Area, Perimeter, and Volume Introduction The performance tasks in this chapter focus on applying the properties of triangles and polygons to
Perimeter. 14ft. 5ft. 11ft.
Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine
GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement
GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2-D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4
Platonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples:
Solid Geometry Solid Geometry is the geometry of three-dimensional space, the kind of space we live in. Three Dimensions It is called three-dimensional or 3D because there are three dimensions: width,
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
Session 8 Volume. cone cross section cylinder net prism sphere
Key Terms in This Session Previously Introduced volume Session 8 Volume New in This Session cone cross section cylinder net prism sphere Introduction Volume is literally the amount of space filled. But
12 Surface Area and Volume
CHAPTER 12 Surface Area and Volume Chapter Outline 12.1 EXPLORING SOLIDS 12.2 SURFACE AREA OF PRISMS AND CYLINDERS 12.3 SURFACE AREA OF PYRAMIDS AND CONES 12.4 VOLUME OF PRISMS AND CYLINDERS 12.5 VOLUME
14.1 Drum Roll, Please! Volume of a Cylinder... 747. 14.2 Piling On! Volume of a Cone...761. 14.3 All Bubbly. Volume of a Sphere...
Volume Disco balls are spheres that reflect light in all different directions. They were really popular in dance clubs throughout the 1960s, 1970s, and 1980s. 14.1 Drum Roll, Please! Volume of a Cylinder...
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
Assessment For The California Mathematics Standards Grade 3
Introduction: Summary of Goals GRADE THREE By the end of grade three, students deepen their understanding of place value and their understanding of and skill with addition, subtraction, multiplication,
MATH STUDENT BOOK. 6th Grade Unit 8
MATH STUDENT BOOK 6th Grade Unit 8 Unit 8 Geometry and Measurement MATH 608 Geometry and Measurement INTRODUCTION 3 1. PLANE FIGURES 5 PERIMETER 5 AREA OF PARALLELOGRAMS 11 AREA OF TRIANGLES 17 AREA OF
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?
Middletown Public Schools Mathematics Unit Planning Organizer Subject Mathematics Grade/Course Grade 7 Unit 3 Two and Three Dimensional Geometry Duration 23 instructional days (+4 days reteaching/enrichment)
Grade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
Characteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview
Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Summary of Lessons: This set of lessons was designed to develop conceptual understanding of the unique attributes
Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Geometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
STATE GOAL 7: Estimate, make and use measurements of objects, quantities and relationships and determine acceptable
C 1 Measurement H OW MUCH SPACE DO YOU N EED? STATE GOAL 7: Estimate, make and use measurements of objects, quantities and relationships and determine acceptable levels of accuracy Statement of Purpose:
Calculating the Surface Area of a Cylinder
Calculating the Measurement Calculating The Surface Area of a Cylinder PRESENTED BY CANADA GOOSE Mathematics, Grade 8 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping
MATH 110 Landscape Horticulture Worksheet #4
MATH 110 Landscape Horticulture Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As a Landscape Horticulturist,
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
Advanced GMAT Math Questions
Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of
Perimeter is the length of the boundary of a two dimensional figure.
Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose
WEIGHTS AND MEASURES. Linear Measure. 1 Foot12 inches. 1 Yard 3 feet - 36 inches. 1 Rod 5 1/2 yards - 16 1/2 feet
WEIGHTS AND MEASURES Linear Measure 1 Foot12 inches 1 Yard 3 feet - 36 inches 1 Rod 5 1/2 yards - 16 1/2 feet 1 Furlong 40 rods - 220 yards - 660 feet 1 Mile 8 furlongs - 320 rods - 1,760 yards 5,280 feet
Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain
AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent
Activity Set 4. Trainer Guide
Geometry and Measurement of Solid Figures Activity Set 4 Trainer Guide Mid_SGe_04_TG Copyright by the McGraw-Hill Companies McGraw-Hill Professional Development GEOMETRY AND MEASUREMENT OF SOLID FIGURES
1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?
Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is
Volume of Pyramids and Cones
Volume of Pyramids and Cones Objective To provide experiences with investigating the relationships between the volumes of geometric solids. www.everydaymathonline.com epresentations etoolkit Algorithms
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Santa Monica College COMPASS Geometry Sample Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the area of the shaded region. 1) 5 yd 6 yd
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
GRADE 10 MATH: A DAY AT THE BEACH
GRADE 0 MATH: A DAY AT THE BEACH UNIT OVERVIEW This packet contains a curriculum-embedded CCLS aligned task and instructional supports. The final task assesses student mastery of the geometry standards
MATH 100 PRACTICE FINAL EXAM
MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
GEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
The teacher gives the student a ruler, shows her the shape below and asks the student to calculate the shape s area.
Complex area Georgia is able to calculate the area of a complex shape by mentally separating the shape into familiar shapes. She is able to use her knowledge of the formula for the area of a rectangle
MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.
MEASUREMENTS A measurement includes a number and a unit. 3 feet 7 minutes 12 gallons Standard units of measurement have been established to simplify trade and commerce. TIME Equivalences between units
Problem of the Month: Circular Reasoning
Problem of the Month: Circular Reasoning The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
1-6 Two-Dimensional Figures. Name each polygon by its number of sides. Then classify it as convex or concave and regular or irregular.
Stop signs are constructed in the shape of a polygon with 8 sides of equal length The polygon has 8 sides A polygon with 8 sides is an octagon All sides of the polygon are congruent and all angles are
9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
Section 7.2 Area. The Area of Rectangles and Triangles
Section 7. Area The Area of Rectangles and Triangles We encounter two dimensional objects all the time. We see objects that take on the shapes similar to squares, rectangle, trapezoids, triangles, and
Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.
Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite
GCSE Exam Questions on Volume Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice.
Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice. Cylindrical glasses of height 10 cm and radius 3 cm are to be filled from the carton. How
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
