Seismic Performance Evaluation of Existing Bridge Vinay Kumar M 1, Shivanand C G 2

Similar documents
Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

SEISMIC RETROFITTING OF STRUCTURES

Seismic performance evaluation of an existing school building in Turkey

Optimum proportions for the design of suspension bridge

EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND

Seismic Risk Prioritization of RC Public Buildings

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE

SEISMIC RETROFIT DESIGN CRITERIA

NUMERICAL ANALYSIS OF A HORIZONTALLY CURVED BRIDGE MODEL

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN

Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift

Methods for Seismic Retrofitting of Structures

Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization

Seismic Evaluation and Retrofitting of RC Building by Using Energy Dissipating Devices

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

REPAIR AND RETROFIT OF BRIDGES DAMAGED BY THE 2010 CHILE MAULE EARTHQUAKE

Specification for Structures to be Built in Disaster Areas

INTRODUCTION TO LIMIT STATES

SEISMIC RETROFITTING OF REINFORCED CONCRETE BUILDINGS USING TRADITIONAL AND INNOVATIVE TECHNIQUES

SEISMIC DESIGN OF HIGHWAY BRIDGES

VERIFICATION OF THE METHOD FOR IMPROVING ACCURACY OF SIMPLIFIED SEISMIC RESPONSE ANALYSIS OF STEEL RIGID FRAME VIADUCTS

4B The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

! # # % % & () +, & +,,. / 0 % % ) () 3

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

AN IMPROVED SEISMIC DESIGN APPROACH FOR TWO-COLUMN REINFORCED CONCRETE BENTS OVER FLEXIBLE FOUNDATIONS WITH PREDEFINED DAMAGE LEVELS

The International Journal Of Science & Technoledge (ISSN X)

SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K.

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

SEISMIC DESIGN OF MULTI-STORY BUILDINGS WITH METALLIC STRUCTURAL FUSES. R. Vargas 1 and M. Bruneau 2 ABSTRACT

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

RECOMMENDATIONS FOR THE DESIGN AND CONSTRUCTION OF BASE ISOLATED STRUCTURES

Structural Design of Multi-story Residential Building for in Salem, India

Rehabilitation of a 1985 Steel Moment- Frame Building

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS

Seismic Retrofit of Bridges - A Short Course

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California Prepared By

Control of Seismic Drift Demand for Reinforced Concrete Buildings with Weak First Stories

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE ABSTRACT

Bridging Your Innovations to Realities

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI

Advanced Retrofitting Methods and Techniques for RC Building: State of an Art

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig some of the trusses that are used in steel bridges

Seismic Isolation Retrofitting of Japanese Wooden Buildings

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6)

How To Write An Analysis System For Bridge Test

PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS

NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES

The Basics of FEA Procedure

Seismic Isolated Hospital Design Practice in Turkey: Erzurum Medical Campus

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations

SEISMIC APPROACH DESIGN COMPARISON BETWEEN

Expected Performance Rating System

Pancake-type collapse energy absorption mechanisms and their influence on the final outcome (complete version)

Safe & Sound Bridge Terminology

DYNAMIC ANALYSIS ON STEEL FIBRE

New approaches in Eurocode 3 efficient global structural design

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

PUSHOVER ANALYSIS OF RC BUILDINGS WITH DIFFERENT NONLINEAR MODELS

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads

SEISMIC RETROFITTING STRATEGIES FOR BRIDGES IN MODERATE EARTHQUAKE REGIONS

A project report on, Prepared in partial fulfillment of. Study oriented project, Course code: CE G611 Computer Aided Analysis and Design

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Current Status of Seismic Retrofitting Technology

SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN

ETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ANALYSIS AND DESIGN OF RC TALL BUILDING SUBJECTED TO WIND AND EARTHQUAKE LOADS

Structural Audit of Buildings

INTRODUCTION TO BEAMS

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT

Effect of Container Height on Base Shear of Elevated Water Tank

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

DISTRIBUTION OF LOADSON PILE GROUPS

G. Michele Calvi IUSS Pavia

Technical Notes 3B - Brick Masonry Section Properties May 1993

(1) Minami Nagamachi and Naka Nagamachi viaducts between Shiraishi Zao and Sendai Stations on the Tohoku Shinkansen line

Nonlinear Structural Analysis For Seismic Design

Concrete Frame Design Manual

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS

ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE RESISTANCES

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

Seismically retrofitting reinforced concrete moment resisting frames by using expanded metal panels

A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Seismic Analysis and Design of Steel Liquid Storage Tanks

DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES

Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1

Transcription:

Seismic Performance Evaluation of Existing Bridge Vinay Kumar M 1, Shivanand C G 2 Abstract Earthquakes are the most devastating forces that structures are likely to be subjected to. The observed behaviour of bridges during the past earthquakes has indicated several deficiencies in their design, in view of the fact that many of them were not designed in accordance with the recent seismic design procedures. As a result many of the bridges constructed earlier fail to meet requirement of current codes. Such bridges may need seismic assessment and retrofitting. In order to address this problem, the aim of the present project is to carry out a seismic evaluation case study for an existing RC bridge using push over analysis. An existing 11-span integral reinforced concrete slab deck bridge is considered for the present study and it is seismically evaluated. Computer software Csi Bridge is used to analyze the bridge. Push over analysis is adopted to evaluate seismic performance of a bridge. Result obtained from the analysis is taken as the demand for the applied lateral load. This demand is compared with the capacity of the structural elements of the bridge. In any case capacity of the elements is less than the demand then the capacity of those elements has to be increased with the suitable retrofitting method. The best retrofitting method can be achieved by either the use of dampers or by the adoption of base isolation. Among these base isolation is gaining significant popularity in the recent years. When the bridge was subjected to an earthquake similar to the Bhuj Earthquake in transverse and longitudinal directions, from the time history analysis base shear and base moment is compared with integral bridge & isolation of bridge. Index Terms Demand, Capacity, Pushover Analysis, Base shear, Time history analysis. I. INTRODUCTION Bridges are lifeline structures. They are an important link in surface transportation networks, and their failure during a seismic event will seriously hamper relief and rehabilitation work. Due to their structural simplicity, bridges are particularly vulnerable to damage and can even collapse when subjected to earthquake motions. General earthquake design philosophy is to design the structure to prevent complete collapse in case of very strong ground motion. There are many literatures available on the seismic evaluation procedures of multi-storied buildings. There is no much effort available in literature for seismic evaluation of existing bridges although bridge is a very important structure in any country. The attention for existing bridges is comparatively less. However, bridges are very important components of transportation network in any country. The Manuscript received May, 216. 1. Vinay Kumar M, PG Student, The Department of Civil Engineering, The Oxford College of Engineering, Bangalore, India. 2. Shivanand C.G, Asst. Professor, The Department of Civil Engineering, The Oxford College of Engineering, Bangalore, India. bridge design codes in India have no seismic design provision at present. A large number of bridges are designed and constructed without considering seismic forces. Therefore, it is very important to evaluate the capacity of existing bridges against seismic force demand. Seismic isolation is a method that attempts to reduce the seismic forces to or near the elastic capacity of the structural member, thereby reducing the inelastic deformations. The main concept in isolation is to reduce the fundamental frequency of structural vibration to a value lower than the predominant energy-containing frequencies of the earthquake. The other purpose of an isolation system is to provide a means of energy dissipation, which dissipates the seismic energy transmitted to the system. Thus, the isolation device, which replaces the conventional bridge bearings, isolates the bridge deck which alone is responsible for the majority of the pier base shear from the bridge substructure during earthquakes, thereby significantly reducing the deck acceleration and, consequently, the forces transmitted to the piers. Refer to the fig.2. A. Pushover Analysis The use of the nonlinear static analysis (pushover analysis) came in to practice in 197 s but the potential of the pushover analysis has been recognized for last 1-15 years. This procedure is mainly used to estimate the strength and drift capacity of existing structure and the seismic demand for this structure subjected to selected earthquake. This procedure can be used for checking the adequacy of new structural design as well. The effectiveness of pushover analysis and its computational simplicity brought this procedure in to several seismic guidelines (ATC 4 and FEMA 356) and design codes (Euro code 8 and PCM 3274) in last few years. Pushover analysis is defined as an analysis wherein a mathematical model directly incorporating the nonlinear load-deformation characteristics of individual components and elements of the building shall be subjected to monotonically increasing lateral loads representing inertia forces in an earthquake until a target displacement is exceeded. Target displacement is the maximum displacement (elastic plus inelastic) of the building at roof expected under selected earthquake ground motion. Pushover analysis assesses the structural performance by estimating the force and deformation capacity and seismic demand using a nonlinear static analysis algorithm. The seismic demand parameters are global displacements (at roof or any other reference point), storey drifts, storey forces, and component deformation and component forces. The analysis accounts for geometrical nonlinearity, material inelasticity and the redistribution of internal forces. Response characteristics that can be obtained from the pushover analysis are summarized as follows: Estimates of force and displacement capacities of the structure. Sequence of the member yielding and the progress of the overall capacity curve. Estimates of force (axial, shear and moment) demands on potentially brittle elements and deformation demands on ductile elements. 1596

Estimates of global displacement demand, corresponding inter-storey drifts and damages on structural and non-structural elements expected under the earthquake ground motion considered. Sequences of the failure of elements and the consequent effect on the overall structural stability. Identification of the critical regions, where the inelastic deformations are expected to be high and identification of strength irregularities (in plan or in elevation) of the building. II. DESCRIPTION OF THE STUDY BRIDGE The bridge is situated Karnataka, India. It is multi-span simply supported reinforced cement concrete integral bridge having the total length of 264 m with 11 equal spans of 24 m length. It is supported on single pier type bents, which are transversely connected by the bent cap. The bridge piers and abutments are supported on well foundations. Fig 3. Deck Section Details Fig 1. Determination of Performance Point. Fig 2. Effect of Seismic Isolation on Spectral Acceleration Fig 4. Elevation of Longitudinal Girders Table 1. Cross sectional details of bridge Bridge Componen t Deck Slab Bent Cap Bent Pier Dimensions (mm) Width 12 Depth 243 Cross Section 23 x 18 Length 1115 Diameter 2 Height 64 Abutment Fixed Fixed Materials: M4 concrete and Fe-415 steel Loadings: Dead Load Self weight of the superstructure. Moving Loads IRC_AA_W (IRC 6 Code). Earthquake Load Response Spectra Pushover Analysis in Csi Bridge Target Displacement 4% of bridge height. Time Period Program Calculated. 1597

Lead Rubber Isolator Properties: Effective Stiffness (kn/m) 54894.92 Bearing Horizontal Stiffness (kn/m) 45 III. RESULTS AND DISCUSSION A. Pushover Analysis Results a) Pushover curve for Zone II Post yield stiffness ratio.11 Yield Strength - 138.6 Damping.5 B. MODELLING OF THE BRIDGE A three dimensional (3D) finite element model (FEM) of the bridge was created using Structural Analysis and Program Software Csi Bridge. The Bridge modeller can be used to bridge wizard generates a bridge model. The Bridge wizard provides a step-by-step guide through the modelling process using Csi Bridge Information Modeller. The deck edges in each simply supported span were considered rigid. Due to the large in-plane rigidity, the superstructure was assumed as a rigid body for lateral loadings. The bridge consists of six equal spans and five wall type bent was modelled as a frame. The framing action and coupling between columns in the column bent provides seismic resistance in terms of strength and stiffness. The pier cap and the piers were modelled as beam-column elements. Deck is modelled as shell thin elements. The default hinge properties (PMM P stands for axial force, M stands for M2 moment, and M stands for M3 moment in Csi Bridge) were assigned to each end of the columns. The base of the column was assumed as fixed. The deck of the bridge is integrally connected to the pier cap. The bridge is also analyzed using non-linear time history method. The time history acceleration data of Bhuj earthquake (2 Jan 211) is used as the time history function for analysis. Assuming in case if it were to be constructed with lead rubber bearings and this bearing was placed in between deck and pier cap, study is carried out by nonlinear time history analysis to investigate time period, base shear etc. Finally results are compared with integral bridge and isolated bridge. Below figure showing modelling of study bridge. Fig 5. Pushover curve in longitudinal direction for type 2 Fig 5.1. Pushover curve in transverse direction for type 2 Table 2. Demand and Capacity of the bridge for different types of in Zone II DEMAND CAPACITY OF OF THE THE SOIL CO - STRUCT STRUCTURE DISPLACEMENT EFFICIENTS URE (BASE SHEAR) (MM) (DBE) (BASE SHEAR) C a C v X Y X Y TYPE I (HARD).5.5 1572.9 113 12236.35.49 TYPE II (MEDIUM ).5.7 2139.2 184 124.311.51 TYPE III (SOFT).5.8 2626.8 113 12737.285.56 1598

Z O N E - 2 Capacity of the Structure in X - direction 12 1 113.496 184.39 113.23 8 6 4 2 1572.981 2139.255 2626.879 Hard Fig 6. Chart representing demand and capacity of the structure for Zone II in x direction. Z O N E - 2 Fig 7.1. Pushover curve in transverse direction for type 2 Table 3. Demand and Capacity of the bridge for different types of in Zone III 14 12 1 8 6 4 2 12236.73 124.278 12737.587 1572.981 Hard Capacity of the Structure in Y - direction 2139.255 2626.879 Fig 6.1 Chart representing demand and capacity of the structure for Zone II in y direction. SOIL CO - EFFICIENTS (DBE) DEMAND OF THE STRUCTU RE (BASE SHEAR) CAPACITY OF THE STRUCTURE (BASE SHEAR) DISPLACEMENT (MM) C a C v X Y X Y TYPE I.8.8 2516.77 1756 12528.42.53 (HARD) TYPE II.8.11 3422.87 985 12418.268.51 (MEDIUM) TYPE III (SOFT).8.13 423.6 991 12552.268.53 b) Pushover curve for Zone III Z O N E - 3 Capacity of the Structure in X - direction 12 1 8 6 4 2 1756.724 2516.77 Hard 985.114 991.33 3422.87 423.6 Fig 8. Chart representing demand and capacity of the structure for Zone III in x direction. Fig 7. Pushover curve in longitudinal direction for type 2 1599

Z O N E - 3 Capacity of the Structure in Y - direction 15 12528.619 12418.485 12552.141 1 5 1572.981 2139.255 2626.879 Hard Fig 8.1. Chart representing demand and capacity of the structure for Zone III in x direction. Discussion on Pushover Results The pushover analysis was conducted in both the transverse and the longitudinal directions. It is assumed that the shape of the global pushover curve reflects the global or local mechanism involved when the structure approaches dynamic instability. The capacity curve (pushover curve) is the graphical plot of the total lateral force or base shear (V b ) on a structure against the lateral deflection (δ) of the control node of the bridge structure. The pushover curve for longitudinal direction is shown in Figure 6. The figure indicates that the performance point occurred at a base shear of 184 kn with the control node displacement of.311m for the type-2 in Zone-2. The pushover curve for transverse direction is shown in Figure 6.1. The figure indicates that the performance point occurred at a base shear of 124 kn with the control node displacement of.51 m for the type-2 in Zone-2. Demand of the bridge in both direction occurred at base shear of 2139.2 kn. Similarly varying type, zones demand and capacity of bridge for each and zones is found out. Demand of the bridge is obtained from the linear static earthquake analysis (using IS 1893-22 part-1). Capacity of the bridge is obtained from the nonlinear static pushover analysis. In this case demand and capacity of the bridge is found for both zone-2 & zone-3.in both zones demand of the bridge is less than capacity of the bridge, so this bridge does not required any retrofitting work. Fig 9. Plastic Hinge formation for gravity loads B. Time History Analysis Results Preliminarily, it is intended to compare the seismic behaviour of an integral bridge and an isolated bridge. The modal time periods for different modes of the bridge with and without isolation are shown in figure. Fig 1. Comparison of Modal Time Periods for the bridge It can be clearly seen that, isolated bridges shows much higher time periods compared to integral bridges. Hence the effect of isolation is to impart flexibility to the structure. Fig 11. Comparison of Base moment of a typical pier in x - direction. 16

Fig 14. Comparison of Base shear of a typical pier in y - direction. Fig 12. Comparison of Base moment of a typical pier in y - direction. Fig 13. Comparison of Base shear of a typical pier in x - direction. The base shear in global x and y directions are plotted as a function of time for the time history function. The maximum base shear experienced by an integral bridge is significantly higher compared to an isolated bridge. Internal forces in one of the pier are also plotted for the time history function as shown in above figure. The members in the base isolated structure developed much lesser bending moments and shear forces compared to non-isolated structure. This is a clear illustration of the energy absorbing capacity of the base isolated system which reduces the earthquake loads that are transferred to the superstructure from the foundation. IV. CONCLUSION Following conclusions are drawn from the present study of non-linear static (pushover) analysis and nonlinear dynamic time history analysis on integral bridge and isolated bridge. The bridge selected has been evaluated for the seismic performance. Capacity and demand the structure is obtained by pushover analysis. Demand of the structure is less than the capacity. Therefore retrofitting is not required. The survivability of the bridge structure under Bhuj earthquake was checked using capacity spectrum method. It was found that the study bridge could survive Bhuj Earthquake. Base isolation is an effective and efficient method of reducing the effect of seismic forces by lengthening the time period of the structure and reducing the forces transferred to the super structure. Structures with base isolation shows higher modal time periods compared with integral bridge indicating the increased flexibility of the bridge. The internal forces in the members are also considerably reduced due to the incorporation of isolation system. The flexibility imparted to the structure by the base isolation system increases with decrease in the lateral stiffness of the isolator. 161

ACKNOWLEDGMENT I would like to thank my guide and advisor, Mr. Shivanand CG, Assistant Professor of civil department at the Oxford College of Engineering, Bangalore for his guidance. And my special thanks to the Head of the Department, management, faculty and friends of the Oxford College of Engineering, Bangalore, Karnataka for their support. REFERENCES [1] Agarwal P. and Shrikhande M (26) Earthquake Resistant Design of Structures. [2] R.E.T. Amaladosson and U. Gunasekaran Analysis of T beam Bridge for seismic characterisation 214 NZSEE conference. [3] ATC-4, Applied Technology Council, (1996) Seismic Evaluation and Retrofit of Concrete Buildings, Vol. 1-2, Applied Technology Council, Redwood City, California. [4] IS: 1893-22 (Part 1), Indian Standard Criteria for Earthquake Resistant Design of Structures, fifth revision, Bureau of Indian Standards, New Delhi. [5] IS: 456-2, Indian Standard Plain and Reinforced Concrete-Code Of Practice (Fourth Revision), Bureau of Indian Standards, New Delhi. [6] IS: 875-1987 Reaffirme d 23 (Part 2), Code of Practice for Design Loads (other than earthquake) for Buildings and Structures, Imposed Loads, Bureau of Indian Standards, New Delhi. [7] IS: 875-1987 Reaffirme d 23 (Part 3), Code of Practice for Design Loads (other than earthquake) for Buildings and Structures, Wind Loads, Bureau of Indian Standards, New Delhi. [8] Kaliprasanna Sethy (211) Application of Pushover Analysis to RC Bridges, Report, Department of Civil Engineering, National Institute of Technology, Rourkela. [9] Kappos A. J, Paraskeva T. S and Sextos A. G (25) Modal Pushover Analysis as a Means for the Seismic Assessment Of Bridge Structures, No. 49, Proceedings of the 4 t h European Workshop on the Seismic Behaviour of Irregular and Complex Structures, Thessaloniki, Greece. [1] Ranjit S Abeysinghe, Evgenia Gavaise, Marco Rosignoli and Theodoros Tzaveas (22) Pushover Analysis of Inelastic Seismic Behavior of Greveniotikos Bridge, Journal of Bridge Engineering, Vol. 7, No. 2, ASCE. BIOGRAPHY 1. Vinay Kumar M D.C.E., B.E., A.M.I.E., (M.Tech) PG Student, Civil Engineering Department, The Oxford College of Engineering, Bangalore, Karnataka, India. 2. Shivananad C G B.E., M.Tech (Ph.D) Assistant Professor, Civil Engineering Department, The Oxford College of Engineering, Bangalore, Karnataka, India. 162