Statistical Quality Control. Module 6 July 16, 2014

Similar documents
Statistical Quality Control

STATISTICAL QUALITY CONTROL (SQC)

Managerial Statistics Module 10

Process Quality. BIZ Production & Operations Management. Sung Joo Bae, Assistant Professor. Yonsei University School of Business

1 Variation control in the context of software engineering involves controlling variation in the

Statistical Process Control OPRE

Quality control: Meaning, process control, SQC control charts, single, double and sequential sampling, Introduction to TQM.

STATISTICAL METHODS FOR QUALITY CONTROL

Control CHAPTER OUTLINE LEARNING OBJECTIVES

Attributes Acceptance Sampling Understanding How it Works

The Seven Basic Tools. QUALITY CONTROL TOOLS (The Seven Basic Tools) What are check sheets? CHECK SHEET. Illustration (Painting defects)

Quality and Quality Control

Individual Moving Range (I-MR) Charts. The Swiss Army Knife of Process Charts

46.2. Quality Control. Introduction. Prerequisites. Learning Outcomes

THE PROCESS CAPABILITY ANALYSIS - A TOOL FOR PROCESS PERFORMANCE MEASURES AND METRICS - A CASE STUDY

Gage Studies for Continuous Data

Assessing Measurement System Variation

Applied Reliability Applied Reliability

QUIZ MODULE 1: BASIC CONCEPTS IN QUALITY AND TQM

Statistical Process Control Basics. 70 GLEN ROAD, CRANSTON, RI T: F:

MEANING & SIGNIFICANCE OF STATISTICAL PROCESS CONTROL [SPC] Presented by, JAYA VARATHAN B SANKARAN S SARAVANAN J THANGAVEL S

STATISTICAL REASON FOR THE 1.5σ SHIFT Davis R. Bothe

The Philosophy of TQM An Overview

Common Tools for Displaying and Communicating Data for Process Improvement

Unit 22: Sampling Distributions

Getting Started with Statistics. Out of Control! ID: 10137

SPC Response Variable

Lab 11. Simulations. The Concept

Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras

δ Charts for Short Run Statistical Process Control

Advanced Topics in Statistical Process Control

Background information for the instructor to share with the students:

Control Charts for Variables. Control Chart for X and R

Statistical Process Control (SPC) Training Guide

Unit 23: Control Charts

Learning Objectives. Understand how to select the correct control chart for an application. Know how to fill out and maintain a control chart.

Software Quality. Unit 2. Advanced techniques

Project Quality Management. Project Management for IT

Chapter 8: Project Quality Management

Capability Analysis Using Statgraphics Centurion

Probability Distributions

Total Quality Management and Cost of Quality

CHAPTER 13. Control Charts

DISCRETE MODEL DATA IN STATISTICAL PROCESS CONTROL. Ester Gutiérrez Moya 1. Keywords: Quality control, Statistical process control, Geometric chart.

8. THE NORMAL DISTRIBUTION

International Journal of Pure and Applied Sciences and Technology

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS

The Importance of Project Quality Management. What Is Project Quality? The International Organization for Standardization (ISO)

THE SIX SIGMA BLACK BELT PRIMER

Control chart, run chart, upper control limit, lower control limit, Statistical process control

Principles of Managing Operations (PMO)

Introduction to STATISTICAL PROCESS CONTROL TECHNIQUES

MG1352 TOTAL QUALITY MANAGENMENT UNIT I INTRODUCTION PART-A

A Short Course on Wheel Alignment

START Selected Topics in Assurance

Chapter 1 Modern Quality Management and Improvement. Statistical Quality Control (D. C. Montgomery)

Quality Tools, The Basic Seven

Operations Management OPM-301-TE

Enhancing Student Understanding of Control Charts Using a Dice Activity

THE USE OF STATISTICAL PROCESS CONTROL IN PHARMACEUTICALS INDUSTRY

Descriptive Statistics

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Descriptive Statistics and Measurement Scales

How To Become A Tqm Professional

PROJECT QUALITY MANAGEMENT

Quality Data Analysis and Statistical Process Control (SPC) for AMG Engineering and Inc.

*Quality. Management. Module 5

SPI HS70. Remote Control of Multiple Lines with RMCworks. Systematic Process Management by Inspection Spec Server

The normal approximation to the binomial

The Two Key Criteria for Successful Six Sigma Project Selection Advantage Series White Paper By Jeff Gotro, Ph.D., CMC

UNCONTROLLED COPY FOR REFERENCE ONLY

TOPIC 8 QUALITY OBJECTIVE. Quality

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

I. INTRODUCTION A. There are two aspects to an effective operating system: 1. Design 2. Control.

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests

Independent samples t-test. Dr. Tom Pierce Radford University

SKEWNESS. Measure of Dispersion tells us about the variation of the data set. Skewness tells us about the direction of variation of the data set.

ALIGNMENT. Pump and Driver Alignment

Copies of this document shall be classified either as Controlled or Uncontrolled, and shall be identified as such on the cover sheet.

Multiplexer Software. Multiplexer Software. Dataputer DATA-XL Software

GEORGETOWN UNIVERSITY SCHOOL OF BUSINESS ADMINISTRATION STATISTICAL QUALITY CONTROL. Professor José-Luis Guerrero-Cusumano

Issue 1.0 Jan A Short Guide to Quality and Reliability Issues In Semiconductors For High Rel. Applications

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Appendix O MANUFACTURING YOUTH APPRENTICESHIP PRODUCTION OPERATIONS MANAGEMENT PATHWAY PRODUCTION OPERATIONS MANAGEMENT (UNIT 8)

ENGR 1181 Lab 2: Quality and Productivity Lab

Instruction Manual for SPC for MS Excel V3.0

The normal approximation to the binomial

Use and interpretation of statistical quality control charts

SPECIFICATION Aluminum Module Frames. Allowed anodization before fabrication for clear frames.

CALCULATIONS & STATISTICS

Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing

Normal distribution. ) 2 /2σ. 2π σ

Grade 8 Performance Assessment Spring 2001

Quality Assurance/Quality Control in Acid Deposition Monitoring

Confidence Intervals for Cp

Developing a Formidable Business / Continuous Improvement Methodology in Africa. By: Frederick O Popoola

I/A Series Information Suite AIM*SPC Statistical Process Control

mini Sigma: How To Achieve Six Sigma Benefits On A Tight Budget How, why and when to apply basic analysis tools to boost the bottom line

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

USE OF SHEWART CONTROL CHART TECHNIQUE IN MONITORING STUDENT PERFORMANCE

Transcription:

Statistical Quality Control Module 6 July 16, 2014

Overview Statistical Quality Control Systems What is a sample? Basic forms of sampling Statistical Process Control (SPC) Control charts What are they Interpreting control charts Constructing control charts Exampleseptance Sampling

Two Scoops of Raisins in a Box of Kellogg s Raisin Bran 1. Cereal production Highly Automated Process 2. Kellogg s Uses Quality Management Techniques Such as Establishing Conformance Standards, Sampling, and Statistical Process Control

Two Scoops of Raisins in a Box of Kellogg s Raisin Bran 3. Statistical Quality Control Charts are Used to Determine Whether the Variations Observed from One Cereal Box to the Next are Random or Have a Specific Cause 4. Quality Insurance Inspectors Periodically Open Random Samples of the Packed Boxes that are Ready to be Shipped

Statistical Quality Control 1. The use of statistical tools and analysis to control and improve the quality of a product or service. 2. One of the sets of tools for Total Quality Management (TQM) 3. Central to the strategies promoted by the pioneers of the quality movement, such as Deming, Juran, and Taguchi 4. If you can t describe and measure it, then you can t control or improve it.

Illustrations 1. BASF catalytic cores for pollution control A. Percentage of defective cores 2. Milliken industrial fabrics A. Number of defects per 100 yards 3. Thermalex thermal tubing A. Height and width (variables) 4. Land s End customer service, order fulfillment A. Percentage of correctly filled orders 5. Hospital pharmacy A. Prescription error rate

Steps in Designing Statistical Quality Control Systems Identify critical points Incoming materials & services Work in process Finished product or service Decide on the type of measurement variables attribute Decide on the amount of inspection to be used. Decide who should do the inspection end of line inspectors, or workers inspecting their own work?

When Someone Finds a Defect 1. Containment: Keep the defective items from getting to the customer 2. Correction: Find the cause of the defect and correct it. 3. Prevention: Prevent the cause from happening again. 4. Continuously improve the system.

Statistical Quality Control Methods

Basic Forms of Statistical Sampling Statistical process control (SPC) Sampling to determine if the process is within acceptable limits Acceptance sampling Sampling to accept or reject the immediate lot of product at hand

Variation 1. It always exists! 2. Processes and products never turn out exactly the same. 3. Goals A. Measure the variation B. Understand the causes of variation C. Reduce the variation

Sources of Variation 1. Common causes of variation A. Random causes that we cannot identify B. Unavoidable C. e.g. slight differences in process variables like diameter, weight, service time, temperature D. Deming Funnel: http://www.symphonytech.com/dfunnel.htm 2. Assignable causes of variation A. Causes can be identified and eliminated B. e.g. poor employee training, worn tool, machine needing repair

Use Control Charts A managerial tool used to analyze whether a process is in control or out of control graphs that visually show if a sample is within statistical control limits

Sample Population of interest (e.g., cars produced, customers served, ) Sample: Subset of the population We ll use statistics to judge the quality of the population (lot) based on the quality of the sample

Issues in Using Control Charts Sample Size large enough to detect defectives variables can use smaller sample sizes How often to sample? Depends upon cost Control limits vs. product specifications Is the process capable of producing to specs? Are the specifications appropriate?

Issues in Using Control Charts Sample Size large enough to detect defectives E.g. if expect one defect per hundred, sample size should be at least 100. variables can use smaller sample sizes Because computing (e.g. mean) instead of counting.

Issues in Using Control Charts How often to sample? Depends upon cost What is the cost of the actual sample? E.g. crash tests for cars What is the cost of the wrong decision? E.g. what happens if you decide a bad batch of medicine is good? (This could happen because of randomness.)

Issues in Using Control Charts Control limits vs. product specifications Is the process capable of producing to specs? If not, then change the process or change the specifications. Are the specifications appropriate? How long do you expect the product to last, or under what conditions do you expect it to survive? Should your ipod survive being run over by your car?

Sampling Errors Type I (α Error or Producer s Risk) Occurs when a sample says parts are bad or the process is out of control when the opposite is true. The probability of rejecting good parts as scrap. Type II (β error or Consumer s Risk) Occurs when a sample says parts are good or the process is in control when the reverse is true. The probability of a customer getting a bad lot represented as good.

Types of Sampling Errors

SPC Methods-Control Charts 1. Control Charts show sample data plotted on a graph A. Center Line (CL): central tendency of the sample data (mean, average) B. Upper Control Limit (UCL): upper limit for sample data C. Lower Control Limit (LCL): lower limit for sample data

Height Control Charts Suppose we produce ipods The average height of the ipod is 3 Throughout the day we randomly sample ipods from the production line and measure their heights 3.0 Average = 3 (centerline) Is the process in good shape or not? Time or production

Control Charts In order to answer this we need to judge whether the process is in control or out of control In Control process variation is due to chance or sampling error. variation is within the limits of the normal curve. the process needs no adjustment. Out of Control process variation due to some assignable cause. variation is outside limits of the normal curve. the process needs attention or adjustment.

Control Charts One way to do this is by adding control limits to our control charts Upper control limit: + 3 standard dev Lower control limit: - 3 standard dev

Height Control Charts Suppose we produce ipods The average height of the ipod is 3 Throughout the day we randomly pull ipods from the production line and measure their height 3.0 Upper Control Limit +3 stdev In Control - 3 stdev Average = 3 Lower control limit Time or production Out of Control

Interpreting Control Charts Out of Control What might lead us to conclude the system is out of control? i. 1 sample statistic outside the control limits

Interpreting Control Charts Out of Control What might lead us to conclude the system is out of control? ii. 2 consecutive sample statistics near the control limits

Interpreting Control Charts Out of Control What might lead us to conclude the system is out of control? iii. 5 consecutive points above or below the central line

Interpreting Control Charts Out of Control What might lead us to conclude the system is out of control? iv. A trend of 5 consecutive points v. Very erratic behavior

Types Of Measurement Attribute measurement Attributes are counts, such as the number (or proportion) of defects in a sample. Product characteristic evaluated with a discrete choice: Good/bad, yes/no.

Types Of Measurement Variables measurement Variables are measures (mean & range or standard deviation) of critical characteristics in a sample. Product characteristic that can be measured on a continuous scale: Length, size, weight, height, time, velocity

Control Charts for Attributes p-charts 1. Calculate the proportion of defective parts in each sample 2. Use P-Charts for quality characteristics that are discrete and involve yes/no or good/bad decisions 3. Number of leaking caulking tubes in a box of 48 4. Number of broken eggs in a carton

P-Chart Example Sample Number of Defective Tires Number of Tires in each Sample 1 3 20 2 2 20 3 1 20 4 2 20 5 1 20 Total 9 100 Proportion Defective A Production manager for a tire company has inspected the number of defective tires in five random samples with 20 tires in each sample. The table shows the number of defective tires in each sample of 20 tires. Calculate the proportion defective for each sample, the center line, and control limits using z = 3.00.

P-Chart Example, cont. n 20, z 3.00 #Defectives 9 CL p 0.09 Total Inspected 100 p UCL (0.09)(0.91) 0.064 20 0.09 3(0.064) 0.282 LCL 0.09 3(0.064) 0.102 0

P-Chart Example, cont. 0.30 0.25 0.20 0.15 0.10 0.05 P-Chart 0.00 1 2 3 4 5 Sample Number

Control Charts for Attributes c-charts 1. Count the number of defects found in each sample or observation period (possibly more than one defect per part) 2. Use C-Charts for discrete defects when there can be more than one defect per unit 3. Number of flaws or stains in a carpet sample cut from a production run 4. Number of complaints per customer at a hotel

C-Chart Calculations c c z average number of defects per sample or observation period c std. deviation of percent defective in a sample number of std. deviations away from process average (usually 3.0 or 2.0) UCL CL c LCL c c z z c c 0

C-Chart Example The number of weekly customer complaints are monitored in a large hotel using a c-chart. Develop three sigma control limits using the data table below. Week Number of Complaints 1 3 2 2 3 3 4 1 5 3 6 3 7 2 8 1 9 3 10 1 Total 22

C-Chart Example, cont. z 3.00 #Complaints 22 CL c 2.20 # Samples 10 c 2.20 1.483 UCL 2.20 3(1.483) 6.65 LCL 2.20 3(1.483) 2.25 0

C-Chart Example, cont. C-Chart 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 Sample Number

Control Charts for Variables 1. Control chart for variables are used to monitor characteristics that can be measured, such as length, weight, diameter, time 2. X-bar Chart: Mean A. Plots sample averages B. Measures central tendency (location) of the process 3. R Chart: Range A. Plots sample ranges B. Measures dispersion (variation) of the process 4. MUST use BOTH charts together to effectively monitor and control variable quality charateristics

R-Chart Calculations n k R D D 3 4 sample size number of samples average sample range LCL parameter UCL parameter UCL D R CL R LCL 4 D R 3 Sample Size (n) Factor for x-chart Factors for R-Chart A2 D3 D4 2 1.88 0.00 3.27 3 1.02 0.00 2.57 4 0.73 0.00 2.28 5 0.58 0.00 2.11 6 0.48 0.00 2.00 7 0.42 0.08 1.92 8 0.37 0.14 1.86 9 0.34 0.18 1.82 10 0.31 0.22 1.78 11 0.29 0.26 1.74 12 0.27 0.28 1.72 13 0.25 0.31 1.69 14 0.24 0.33 1.67 15 0.22 0.35 1.65

R-Chart Example, cont. 0.60 0.50 0.40 0.30 0.20 0.10 0.00 R Chart 1 2 3 Sample Number

X-bar Chart Calculations n k X A 2 sample size number of samples average of the sample means X-bar parameter UCL X A CL X LCL X A 2 2 R R Sample Size (n) Factor for x-chart Factors for R-Chart A2 D3 D4 2 1.88 0.00 3.27 3 1.02 0.00 2.57 4 0.73 0.00 2.28 5 0.58 0.00 2.11 6 0.48 0.00 2.00 7 0.42 0.08 1.92 8 0.37 0.14 1.86 9 0.34 0.18 1.82 10 0.31 0.22 1.78 11 0.29 0.26 1.74 12 0.27 0.28 1.72 13 0.25 0.31 1.69 14 0.24 0.33 1.67 15 0.22 0.35 1.65

X-bar Chart Example, cont. 16.1 X-bar Chart 16.0 15.9 15.8 15.7 1 2 3 Sample Number

Interpreting Control Charts A process is in control if all of the following conditions are met. 1.No sample points are outside limits 2.Most sample points are near the process average 3.About an equal number of sample points are above and below the average 4.Sample points appear to be randomly distributed

Control Chart Examples X-bar Chart R Chart 1 28.0 27.0 26.0 25.0 24.0 0 20 40 60 80 100 Sample Number 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 Sample Number X-bar Chart R Chart 2 28.0 27.0 26.0 25.0 24.0 23.0 0 20 40 60 80 100 Sample Number 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 Sample Number

Limits Based on Out of Control Data X-bar Chart R Chart 3 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0 0 20 40 60 80 100 Sample Number 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Sample Number X-bar Chart R Chart 4 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0 0 20 40 60 80 100 Sample Number 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Sample Number

What is acceptance sampling? 1. Purposes A. Determine the quality level of an incoming shipment or, at the end production B. Ensure that the quality level is within the level that has been predetermined

What is acceptance sampling? 1. Can be either 100% inspection, or a few items of a lot. 2. Complete inspection A. Inspecting each item produced to see if each item meets the level desired B. Used when defective items would be very detrimental in some way

Acceptance Sampling Method ACCEPTANCE SAMPLING TAKE SAMPLE INSPECT SAMPLE Type title here DECISION ACCEPT LOT REJECT LOT SAMPLE AGAIN DECISION RETURN LOT TO SUPPLIER 100% INSPECTION

What is acceptance sampling? 1. Problems with 100% inspection A. Very expensive B. When product must be destroyed to test C. Inspection must be very tedious so defective items do not slip through inspection

Acceptance Sampling Advantages 1. Advantages A. Less handling damages B. Fewer inspectors to put on payroll C. 100% inspection costs are to high D. 100% testing would take to long

Acceptance Sampling Disadvantages 1. Disadvantages A. Risk included in chance of bad lot acceptance and good lot rejection B. Sample taken provides less information than 100% inspection

When is Acceptance Sampling Useful? 1. When product testing is: A. destructive B. expensive C. time consuming 2. When developing new products 3. When dealing with new suppliers 4. When a supplier s product hasn t had excellent quality in the past

Risks of Acceptance Sampling 1. Producers Risk A. The risk associated with a producer rejecting a lot of materials that actually have good quality a. Also referred to as a Type I Error

Risks of Acceptance Sampling 1. Consumers Risk A. The risk associated with a consumer accepting a lot of materials that actually have poor quality a. Also referred to as a Type II Error

When can acceptance sampling be applied? 1. At any point in production 2. The output of one stage is the input of the next

When can acceptance sampling be applied? 1. Sampling at the Input stage A. Prevents goods that don t meet standards from entering into the process B. This saves rework time and money

When can acceptance sampling be applied? 1. Sampling at the Output stage A. Can reduce the risk of bad quality being passed on from the process to a consumer B. This can prevent the loss of prestige, customers, and money

When can acceptance sampling be applied? 1. Sampling at the Process stage A. Can help adjust the process and reduce the amount of poor quality in production B. Helps to determine the source of bad production and enables return for reprocessing before any further costs may be incurred

Acceptance Sampling Inspecting Cookies Each night we inspect cases of cookies produced during the day Cases contain 10,000 cookies each Cookies are randomly removed from each case & inspected Entire cases of cookies are accepted or rejected based on the quality of the samples taken

% defective in case (or lot) Acceptance Sampling Now let s take a look at the 3 cases of cookies produced today ACCEPTED d c LTPD (lot tolerance percent defective) AQL (acceptable quality level for lot) 0 GOOD LOT

% defective in case (or lot) Acceptance Sampling REJECTED d > c LTPD (lot tolerance percent defective) AQL (acceptable quality level for lot) Probability of a committing good lot a is Type rejected I error (producers risk, a) 0 GOOD LOT

% defective in case (or lot) Acceptance Sampling ACCEPTED d c BAD LOT LTPD (lot tolerance percent defective) Probability of a committing bad lot a is Type accepted II error (consumers risk, b) AQL (acceptable quality level for lot) 0 But how many cookies should we pull from each case (sample size, n)? And what is the most defective cookies we can find in a sample before rejecting a lot (c)?

Wrapup We looked at SPC and how to use control charts to monitor processes basically an in-control process was one with random process variation that varied within some control limits

Variability As variability is reduced quality improves Always on time schedules can be planned more precisely Always consistent sizes time can be saved by ordering from catalogs Unfortunately its impossible to obtain zero variability

Variability Designers recognize this Provide acceptable limits around target dimensions could be as tall as this 3.02 3.00 ± 0.02 2.98 or as short as this upper tolerance (spec) limit lower tolerance (spec) limit and still be within spec BUT, is a part that is 3.0199 that much different than one that s 3.0201?

Six Sigma A philosophy and set of methods used to reduce variation in the processes that lead to product defects The name, six sigma refers to the designing spec limits six standard deviations from the process mean

Summary Basic concept of Statistical Quality Control Sources of statistical variations Types of measurements Attributes Variables Types of Control Charts Where would each be best used What is acceptance sampling Why important Six Sigma s basic goal