Jupiter Impact! Monday Sept. 10, 2012 at 11:35 UT Possible asteroid or comet Frame from a video recording made in Dallas, Texas by amateur astronomer

Similar documents
Chapter 3 The Science of Astronomy

Astronomy 1140 Quiz 1 Review

From Aristotle to Newton

Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

Lecture 13. Gravity in the Solar System

Lab 6: Kepler's Laws. Introduction. Section 1: First Law

Chapter 25.1: Models of our Solar System

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

AE554 Applied Orbital Mechanics. Hafta 1 Egemen Đmre

An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

Vocabulary - Understanding Revolution in. our Solar System

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

The Solar System. I. Introduction. S. Gavin and S. P. Karrer Physics Department, Wayne State University, Detroit, MI,

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

Explain the Big Bang Theory and give two pieces of evidence which support it.

Motions of Earth, Moon, and Sun

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Planetary Orbit Simulator Student Guide

Unit 11: Gravity & the Solar System

Newton s Law of Gravity

Study Guide: Solar System

Study Guide due Friday, 1/29

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation

4. Discuss the information as a class (transparency key)

The orbit of Halley s Comet

Introduction to the Solar System

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Unit 8 Lesson 2 Gravity and the Solar System

Gravitation and Newton s Synthesis

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Motions of the Earth. Stuff everyone should know

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

Computer Animations of Ancient Greek and Arabic Planetary Models

Solar System Formation

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Class 2 Solar System Characteristics Formation Exosolar Planets

Astronomy Club of Asheville October 2015 Sky Events

The University of Texas at Austin. Gravity and Orbits

Douglas Adams The Hitchhikers Guide to the Galaxy

Night Sky III Planetary Motion Lunar Phases

The following questions refer to Chapter 19, (PAGES IN YOUR MANUAL, 7 th ed.)

Earth in the Solar System

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Fall Semester Astronomy Review. 3. Directly above the Earth's equator lies the in the sky.

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

Chapter 5: Circular Motion, the Planets, and Gravity

Newton s derivation of Kepler s laws (outline)

Week 1-2: Overview of the Universe & the View from the Earth

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Lab 7: Gravity and Jupiter's Moons

The Stars Tonight LIVE Planetarium Show

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

Pretest Ch 20: Origins of the Universe

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Science Standard 4 Earth in Space Grade Level Expectations

Related Standards and Background Information

Beginning of the Universe Classwork 6 th Grade PSI Science

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

Note S1: Eclipses & Predictions

THE SOLAR SYSTEM - EXERCISES 1

Solar System Overview

Name Class Date. true

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

Planets beyond the solar system

Earth In Space Chapter 3

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks)

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

A long time ago, people looked

Is Pluto a planet? Historical overview. Personal anecdotes. Launch of the Hubble Space Telescope April 24, 1990

Science Focus 9 Space Exploration Topic Test

A short history of telescopes and astronomy: Galileo to the TMT

WORLD HISTORY: SCIENTIFIC REVOLUTION AND ENLIGHTENMENT. Jeopardy Version Watch out Alex Trebek

INDEPENDENT PROJECT: The Spring Night Sky

galaxy solar system supernova (noun) (noun) (noun)

Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

Page. ASTRONOMICAL OBJECTS (Page 4).

Earth Is Not the Center of the Universe

Big bang, red shift and doppler effect

Barycenter of Solar System Earth-Moon barycenter? Moon orbits what?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

ANSWER KEY. Chapter phase 9. spring 10. lunar 11. solar 12. gravity

UC Irvine FOCUS! 5 E Lesson Plan

Observing the Constellations of the Zodiac

STUDY GUIDE: Earth Sun Moon

Unit 5: Space Exploration

Exploration of the Solar System

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

1 A Solar System Is Born

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Transcription:

Jupiter Impact! Monday Sept. 10, 2012 at 11:35 UT Possible asteroid or comet Frame from a video recording made in Dallas, Texas by amateur astronomer George Hall Read story in Space weather web site:www.spaceweather.com

The Copernican revolution Chapters 2 and 3

The Ancient Mystery of the Planets Chapter 2, section 2.4 Topics we will explore: What was once so mysterious about planetary motion in our sky? Why did the ancient Greeks reject the real explanation for planetary motion?

3.2 Ancient Greek Science More topics to explore: Why does modern science trace its roots to the Greeks? How did the Greeks explain planetary motion? How was Greek knowledge preserved through history?

Planets Known in Ancient Times Mercury difficult to see; always close to Sun in sky Venus very bright when visible; morning or evening star. Mars noticeably red Jupiter very bright, Saturn moderately bright Picture of a grouping of five planets in the evening sky on April 23, 2002. Their positions trace a portion of the ecliptic. This is called in the media planetary alignment

What was once so mysterious about planetary motion in our sky? Planets usually move slightly eastward from night to night relative to the stars ( wanderers in the sky). But sometimes they go westward relative to the stars for a few weeks. This is called apparent retrograde motion. A composite of 29 individual pictures of Mars taken between June and November 2003 shows the apparent retrograde motion. Notice that Mars is brighter around August 27 when it is closer to Earth. Also note that the series of small dots to the right of the center is the planet Uranus which happens to be in that part of the sky

How did the Greeks explained the retrograde motion? According to the Ptolemaic model (based on Ptolemy 100-170 A.D. model ) during the retrograde motion, the planets really go backward.

How the retrograde motion can be explained in the heliocentric model? We see apparent retrograde motion when the Earth passes by a planet such as Mars in its orbit.

Explaining Apparent Retrograde Motion Easy for us to explain: occurs when we lap another planet (or when Mercury or Venus laps us). But very difficult to explain if you think that Earth is the center of the universe! In fact, ancients considered but rejected the correct explanation.

Parallax concept

Why did the ancient Greeks reject the real explanation for planetary motion? Their inability to observe stellar parallax was a major factor. If the Earth was in orbit around the Sun we should see nearby stars changing position when the Earth move in its orbit

The Greeks knew that the lack of observable parallax could mean one of two things: 1. Stars are so far away that stellar parallax is too small to notice with the naked eye. 2. Earth does not orbit the Sun; it is the center of the universe. With rare exceptions such as Aristarchus (310-230 B.C.), the Greeks rejected the correct explanation (1) because they did not think the stars could be that far away. Aristarchus is credited to be the first to suggest that the Earth goes around the Sun Thus, the stage was set for the long, historical showdown between Earthcentered and Sun-centered systems.

What have we learned? What was so mysterious about planetary motion in our sky? Like the Sun and Moon, planets usually drift eastward relative to the stars from night to night, but sometimes, for a few weeks or few months, a planet turns westward in its apparent retrograde motion. Why did the ancient Greeks reject the real explanation for planetary motion? Most Greeks concluded that Earth must be stationary, because they thought the stars could not be so far away as to make parallax undetectable.

Ancient Greek Science Chapter 3, section 3.2 Geocentric model: the Earth is the center of the solar system (and the universe). Heliocentric model: The Sun is the center of the solar system

Why does modern science trace its roots to the Greeks? Greeks were the first people known to make models of nature. They tried to explain patterns in nature without resorting to myth or the supernatural. Greek geocentric model (c. 400 B.C.). The Earth at the center of a series of nested spheres that contain the planets. The outermost sphere hold the stars.

Special Topic: Eratosthenes Measures Earth (c. 240 B.C.) He was able to measure the circumference of the Earth Measurements: Syene to Alexandria distance 5000 stadia At noon: Sun at Syene at zenith Sun at Alexandria ~angle = 7 Alexandria Syene Calculate circumference of Earth: 7/360 (circum. Earth) = 5000 stadia circum. Earth = 5000 360/7 stadia 250,000 stadia Compare to modern value ( 40,100 km): Greek stadium 1/6 km 250,000 stadia 42,000 km

How did the Greeks explain planetary motion? Underpinnings of the Greek geocentric model: Earth at the center of the universe Heavens must be perfect : Objects moving on perfect spheres or in perfect circles. Plato Aristotle

The most sophisticated geocentric model was that of Ptolemy (A.D. 100-170) the Ptolemaic model: Sufficiently accurate to remain in use for 1,500 years, until the 1600 s when the heliocentric model was introduced. Ptolemy Arabic translation of Ptolemy s work named Almagest ( the greatest compilation )

Ptolemaic Universe Useful for predicting the positions of planets in the sky, but ultimately wrong. The large circle, called deferent is the path of a planet in its orbit around the Earth The small circle is called epicycle. It was necessary to introduce it to explain the retrograde motion

What have we learned? How was Greek knowledge preserved through history? While Europe was in its Dark Ages, Islamic scientists preserved and extended Greek science, later helping to ignite the European Renaissance

The Copernican Revolution Chapter 3, section 3.3 Some of the topic we will explore are: How did Copernicus, Tycho, and Kepler challenge the Earth-centered model? What are Kepler s three laws of planetary motion? How did Galileo solidify the Copernican revolution?

How did Copernicus, Tycho, and Kepler challenge the Earth-centered model? Copernicus (1473-1543) Copernicus: Proposed a Sun-centered model (published 1543). This idea was proposed by Aristarchus about 1700 years earlier. Used model to determine layout of solar system (planetary distances in AU) But... The model was no more accurate than the Ptolemaic model in predicting planetary positions, because it still used perfect circles.

Tycho Brahe: Compiled the most accurate (accurate to one arcminute) naked eye measurements ever made of planetary positions. Still could not detect stellar parallax, and thus still thought Earth must be at center of solar system (but recognized that other planets go around Sun). Tycho Brahe (1546-1601) He hired Kepler, who used Tycho s observations to discover the truth about planetary motion. Kepler was a mathematician, not an observational astronomer.

Kepler first tried to match Tycho s observations with circular orbits But an 8-arcminute discrepancy led him eventually to propose elliptical orbits. The discrepancy he found was about ¼ the diameter of the moon. (Remember that the Moon has a diameter about 30 arcminutes or ½ of a degrees.) He proposed his three laws of planetary motions, now knows as Kepler s laws Johannes Kepler (1571-1630) If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy.

What is an ellipse? An ellipse looks like an elongated circle.

Important parameters in the ellipse For a circle, the position of the focus coincide with the center and the distance c is zero and the eccentricity is zero

What are Kepler s three laws of planetary motion? Kepler s First Law: The orbit of each planet around the Sun is an ellipse with the Sun at one focus.

Kepler s Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times. This means that a planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun. Perihelion: minimum distance from the sun Aphelion: maximum distance from the Sun

Kepler s Second Law Planets sweep out equal areas in equal intervals of time. They move fastest at perihelion and slowest at aphelion. area A = area B = area C

Kepler s Third Law The square of a planet's orbital period is proportional to the cube of its semi-major axis. p = orbital period in years a = avg. distance from Sun in AU p 2 = a 3 Important: The period needs to be in years and the distance in AU Kepler s third law predicts that more distant planets (larger a) orbit the Sun at slower average speeds (longer p) His laws of planetary motions are empirical (Based on fitting this equation to the existing data)

Graphical version of Kepler s Third Law

Question An asteroid orbits the Sun at an average distance a = 4 AU. How long does it take to orbit the Sun? A. 4 years B. 8 years C. 16 years D. 64 years Hint: Remember that p 2 = a 3

Question An asteroid orbits the Sun at an average distance a = 4 AU. How long does it take to orbit the Sun? A. 4 years B. 8 years C. 16 years D. 64 years We need to find p so that p 2 = a 3. Since a = 4, a 3 = 4 3 = 4x4x4 = 64. Therefore, p 2 = 64 = 8 2 Then p= 8.

Galileo (1564-1642) began constructing and using a telescope for astronomical observations around 1610. He did not invented or patented the telescope. Hans Lippershey patented the telescope in 1608. His telescope was very simple and by today standards very rudimentary. But he used an instrument that then it was a new device (But now is can be considered a toy) and was able to discover sunspots, lunar craters and mountains, the phases of Venus and the presence of many stars in the milky way. He turned the telescope into a scientific instrument. Galileo telescope

How did Galileo solidify the Copernican revolution? Galileo overcame major objections to the Copernican view. Three key objections rooted in Aristotelian view were: 1. Earth could not be moving because objects in air would be left behind. 2. Non-circular orbits are not perfect as heavens should be. 3. If Earth were really orbiting Sun, we d detect stellar parallax.

Overcoming the first objection (nature of motion): Galileo s experiments showed that objects in air would stay with Earth as it moves. Aristotle thought that all objects naturally come to rest. Galileo showed that objects will stay in motion unless a force acts to slow them down ( This became later Newton s first law of motion).

Overcoming the second objection (heavenly perfection): Tycho s observations of comet and supernova already challenged this idea by showing that the heavens could change Using his telescope, Galileo saw: Sunspots on the Sun (The Sun is not perfect, it has imperfections ) Mountains and valleys on the Moon (proving it is not a perfect sphere)

Overcoming the third objection (parallax): Tycho thought that his naked eye observations were precise enough to detect stellar parallax. Since he didn t detect parallax, lack of parallax seemed to rule out an orbiting Earth. The fact is that his observations were good to a few arc minutes but stellar parallax are smaller, around a few arc seconds. Galileo showed that the stars must be much farther than Tycho thought in part by using his telescope to see the Milky Way and be able to resolve into countless individual stars. If stars were much farther away, then lack of detectable parallax was no longer so troubling.

Galileo discovered two even more important facts Galileo also saw four moons orbiting Jupiter, proving that not all objects orbit the Earth. The figure shows Galileo s records of Jupiter (~1610) and the position of its four brightest satellites (now called Galilean satellites or moons). Their names are: Io, Europa, Ganymede and Callisto

Galileo s observations of the phases of Venus proved that Venus could not be in orbit around the Earth. His observations were consistent with Venus orbiting the Sun and not the Earth.

The Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun in 1633. At that time he was around 70 years old so he did as he was ordered. His book on the subject was removed from the Church s index of banned books in 1757. And finally in 1835 all books on the heliocentric model were finally removed from the Index of prohibited books Galileo was formally vindicated by the Church in 1992.

Galileo used the Scientific Method when studying objects in the sky. Observation Explanation Prediction

Relative positions of a planet respect to the Sun and Earth

A summary of what we learned? How did Copernicus, Tycho and Kepler challenge the Earth-centered idea? Copernicus created a Sun-centered model; Tycho provided the data needed to improve this model; Kepler found a model that fit Tycho s data. What are Kepler s three laws of planetary motion? 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. As a planet moves around its orbit it sweeps out equal areas in equal times. 3. Planets orbit the Sun following the equation: p 2 = a 3

A summary of what we learned? How did Galileo contributed to the Sun-centered model? Galileo provided for the first time the observational evidence to support the Sun-centered model. Before the invention of the telescope there was no way to learn what Galileo discovered. The facts provided by the observations and supported by Kepler equations provided support to the heliocentric model and allowed to discard the geocentric model.

What have we learned? What was Galileo s role in solidifying the Copernican revolution? His experiments and observations overcame the remaining objections to the Sun-centered solar system model.

What have we learned? In the geocentric model the order of the bodies in the solar system are (in increasing distances): Earth, Moon, Mercury, Venus, Sun, Mars, Jupiter and Saturn Geocentric model In the heliocentric model the order of the bodies in the solar system (in increasing distance) are: Sun, Mercury, Venus, Earth (Moon), Mars, Jupiter and Saturn.

1 st Law 2 nd Law 3 rd Law

The Nature of Science Chapter 2, section 3.4 Our goals for learning: How can we distinguish science from nonscience? What is a scientific theory?

How can we distinguish science from non-science? Defining science can be surprisingly difficult. Science from the Latin scientia, meaning knowledge. Science is a quest for knowledge and an understanding of the Universe and all that is within it Individual scientist learn from those that have proceeded them and their work guide those that follow them As Newton said: If I have seen further it is by standing on the shoulders of giants

The idealized scientific method Based on proposing and testing hypotheses hypothesis = educated guess

But science rarely proceeds in this idealized way. For example: Sometimes we start by just looking then we discovered something and we need to come up with possible explanations for what we observed Serendipitous discoveries. Many of the most important discoveries came after somebody was investigating a completely different phenomenon. One example is the discovery of the 2.7 K cosmic background emission. Penzias and Wilson were investigating a different kind of antenna. They found an additional noise that they could not account for. Sometimes we follow our intuition rather than a particular line of evidence. An example is Kepler following an intuition to find a way to make his heliocentric model works.

Hallmark of Science: #1 Modern science seeks explanations for observed phenomena that rely solely on natural causes. (A scientific model cannot include divine intervention)

Hallmark of Science: #2 Science progresses through the creation and testing of models of nature that explain the observations as simply as possible. An example is the transition from the geocentric model to the heliocentric model. It eliminate the epicycles (Simplicity = Occam s razor )

Hallmark of Science: #3 A scientific model must make testable predictions about natural phenomena that would force us to revise or abandon the model if the predictions do not agree with observations.

What is a scientific theory? The word theory has a different meaning in science than in everyday life. In science, a theory is NOT the same as a hypothesis (or a theory in everyday life), rather: A scientific theory must: Explain a wide variety of observations with a few simple principles, AND Must be supported by a large, compelling body of evidence. Must NOT have failed any crucial test of its validity.

Can a scientific theory be improved? A scientific theory can be improved. For example Newton gravitational theory is still valid. But 300 years later Einstein relativity theory proved to be more general and applies to extreme cases where Newton theory fail. But trying to use relativity in some simple cases is similar to trying to cross the street using a jet airplane! Another example is Kepler s law of planetary motion. It is limited and applies to planets in orbit around the Sun. Newton laws are more general and can be applied to any two bodies in orbit around each other.

Question Darwin s theory of evolution meets all the criteria of a scientific theory. This means: A. Scientific opinion is about evenly split as to whether evolution really happened. B. Scientific opinion runs about 90% in favor of the theory of evolution and about 10% opposed. C. After more than 100 years of testing, Darwin s theory stands stronger than ever, having successfully met every scientific challenge to its validity. D. There is no longer any doubt that the theory of evolution is absolutely true.

Question Darwin s theory of evolution meets all the criteria of a scientific theory. This means: A. Scientific opinion is about evenly split as to whether evolution really happened. B. Scientific opinion runs about 90% in favor of the theory of evolution and about 10% opposed. C. After more than 100 years of testing, Darwin s theory stands stronger than ever, having successfully met every scientific challenge to its validity. D. There is no longer any doubt that the theory of evolution is absolutely true.

What have we learned? How can we distinguish science from nonscience? Science: seeks explanations that rely solely on natural causes; progresses through the creation and testing of models of nature; models must make testable predictions What is a scientific theory? A model that explains a wide variety of observations in terms of a few general principles and that has survived repeated and varied testing

Astrology Chapter 3, section 3.5 Our goals for learning: How is astrology different from astronomy? Does astrology have any scientific validity?

How is astrology different from astronomy? Astronomy is a science focused on learning about how stars, planets, galaxies and other celestial objects work and evolve. Astronomy make use of physics principles, theories and math. It can make testable predictions. Astrology is a search for hidden influences on human lives based on the positions of the Sun, Moon and planets among the stars in the sky, mainly the Zodiac constellations.

Does astrology have any scientific validity? Scientific tests have shown that astrological predictions are no more accurate than we should expect from pure chance. Casting horoscopes by astronomers in the 1600 s was a way to survive! A horoscope by Kepler

How is astrology different from astronomy? Astronomy is the scientific study of the universe and the celestial objects within it. Astrology assumes that the positions of celestial objects influence human events. Does astrology have any scientific validity? Scientific tests show that the predictions of astrology are no more accurate than pure chance. Astrology offers only vague advice rather than testable predictions