Flexible Measuring and Control in Reverse Osmosis Systems: What advantages do modular multi-channel controller for central tasks in water treatment

Similar documents
Water Info. What is Reverse Osmosis?

ECOAZUR BLUEWATER WATER PURIFICATION PLANTS

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

Wastewater Reuse. Typical treated wastewater is:

Troubleshooting Your RO

Dr. Kornder. Anlagen- und Messtechnik GmbH & Co. KG. Company Profile

Drinking water for Gaza Elaboration concept 2

A meaningful, cost-effective solution for polishing reverse osmosis permeate

4 Stage Barracuda RO/DI Instruction & Owner s Manual

Cartridge Filter Application Notes

Basics of Reverse Osmosis

Water Treatment and Reverse Osmosis Systems

RO Reverse Osmosis equipments

Amiad s AMF² pre-treatment technology ensures efficient and reliable nanofiltration of Scottish Highland loch water

KİMYA SANAYİ VE DI TİC.LTD. Tİ.

1. Inspection and monitoring... 3

Electrodeionization (EDI)

Water for Injection (WFI) and Pure Steam Production in a Lean Manufacturing Environment. Larry Zanko Project Manager STERIS Corporation

VIPCLEAN Via Goretta 96/A Mappano di Caselle (TO) Tel Fax

AQUAPRO INDUSTRIAL CO.,LTD. Reverse Osmosis Parts Introduction

Digital inductive conductivity transmitter

Differentiation Summary. Revolutionizing Water Clean-Up Opportunities

Remediation of Water-Based Drilling Fluids and Cleaning of Cuttings

Common Problems with Online Water Quality Analyzers. Greg Macy Director AquatiPro LLC

By: Curt Roth Vice President, Engineering EconoPure Water Systems, LLC. Point of Use/Point of Entry Treatment with LFNano. An EconoPure White Paper

HEINRICH FRINGS INFORMATION

Reverse Osmosis Membranes for Wastewater Reclamation By Craig R. Bartels, PhD Hydranautics, 401 Jones Road, Oceanside California, USA 92054

How To Use A Flowmeter

DOW Ultrafiltration. Case History. High Turbidity and Temperature Fluctuation No Obstacle for DOW Ultrafiltration

Cell Membrane Coloring Worksheet

Chemical Decontamination and Fluid Handling Services

Cell Membrane & Tonicity Worksheet

Quickstart. English Deutsch Français

Advantage System Elix The Best in Pure Water

RO / NF Cleaning Guidelines

HUBER Vacuum Rotation Membrane VRM Bioreactor

2.500 Desalination and Water Purification

COMPARISON OF PLANT AND ANIMAL CELLS SIMILARITIES IN PLANT & ANIMAL CELLS

Membrane Structure and Function

Pall Aria Integrated MF/RO Systems for Cost-Effective Treatment of Sea and Brackish Waters

Well Water Iron Removal Using Quantum DMI-65 Granular Filter Media

Homeostasis and Transport Module A Anchor 4

Optical or Acoustic Process measurement of liquids Turbidity Colour Oil in Water Water in Oil Oil on Water Process UV- Photometry

REVERSE OSMOSIS WATER SYSTEM FOR INDUSTRIAL USE

The Grand Miramare Hotel Santa Margherita (Portofino) Italy March 19 22, Inspiring Innovation and Excellence

Innovation and Progress in Water Treatment Technology

Oily Water Separator SKIT/S-DEB

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Portable Swimming Pool Reverse Osmosis Systems

Thermo Scientific Barnstead TII Pure Water Systems. Pure water. Pure research. Total confidence.

Water Equipment Technologies. Advanced Membrane Technologies for Solving Worldwide Water Problems

How To Control A Power Supply With A Mini Transmitter And Switch (Power Supply)

Water... The essence of life

DIESEL FUEL CONDITIONING

ngenieros Ingenieros Asociados De Control S.L.

The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation

Foam Injection Molding:

the importance of ph in water purification the importance of ph in water purification Water Purification Systems UK

Tablet Packaging Safety

RiOs 3, 5, 8 Water Purification Systems

Section 7-3 Cell Boundaries

Energy Efficient Operations and Maintenance Strategies for Boilers

BIOL 305L Laboratory Two

The Properties of Water

KS3 Science: Chemistry Contents

Conductivity and TDS Meters

Development of Advanced Wastewater Treatment and Reclamation System

Iron and Manganese BACTERIA AND IRON AND MANGANESE

Total water management. Water and wastewater treatment systems for ships and offshore

Novel Press Fabric Cleaning Method Increases Productivity in a Sustainable Manner

Life Sciences USD High Purity Water Systems for the Biopharmaceutical Industry. Improving security, flexibility and operation costs

Complete. Water Solutions. for Rural India

Iron and manganese are two similar elements

Thank you... Welcome to your new world of better living with water2buy s Aquasmart Reverse Osmosis water. How your Reverse Osmosis unit works

Osmosis. Evaluation copy

Subject: Technical Letter 22 April 1977 Removal of Water Supply Contaminants -- Copper and Zinc

Design of Purified Water and Water For Injection Systems. Hugh Hodkinson Engineers Ireland Chemical & Process Division

How To Choose A Total Organic Carbon Analyzer

Reverse Osmosis (RO) Drinking Water System. Product Manual

Using EDI to Meet the Needs of Pure Water Production

The most complete solutions in GRP PIPES AND FITTINGS. ABRERA WATER TREATMENT PLANT (Barcelona) PROJECT REPORT DWTP 2010 / D - 7

7. TECHNICAL ASPECTS OF DESALINATION PLANT

MEMCOR membranes for drinking water applications. Water Technologies

Removing Heavy Metals from Wastewater

THE NWF WATER PURIFICATION PROCESS FRESH WATER IN A NATURAL WAY. Esko Meloni Ferroplan Oy

Cell Transport across the cell membrane. Kathy Jardine and Brian Evans. July 17, 2014

Drainage and Grease Management for the Commercial Kitchen

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

4. Biology of the Cell

drinking water medication short guide

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

ETC -SV. Class 0 oil-free compressed air through catalysis

FILMTEC Membranes Strategies for Using FILMTEC Elements to Lower Your Total Cost of Seawater Desalination

SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC)

Desalination Systems for Yachts, Boats and Motor Homes

GUIDELINES FOR SELECTING RESIN ION EXCHANGE OR REVERSE OSMOSIS FOR FEED WATER DEMINERALISATION

Measuring, Controlling and Regulating with labworldsoft

Stenner Pump Chlorinator Installation & Start Up Guide

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide

The Fouling of Zirconium(IV) Hydrous Oxide Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

Transcription:

: What advantages do modular multi-channel controller for central tasks in water treatment have White Paper August 2010

Flexible Measuring and Control in Reverse Osmosis Systems: What advantages do modular multi-channel controller for central tasks in water treatment have Dr. Egon Hüfner, Segment Manager Water, Bürkert Fluid Control Systems Reverse osmosis systems play a central part in water treatment. In industrial applications, for example, reverse osmosis is used for purifying process water, producing drinking water and desalinizing seawater or for producing ultra pure or pharmaceutical water. In addition to these processes, which aim at reducing the concentration of the substances dissolved in the water, the beverage industry also uses reverse osmosis systems for increasing concentrations, e.g. in the manufacture of fruit juice concentrates or for concentrating the must in wine production. Osmosis, a central active principle in nature, enables the regulation of water in cells and plants. If two fluids with different concentrations of dissolved particles are separated by a semi-permeable membrane, the difference in concentration is equalized by the physical process of diffusion until the concentration of the dissolved molecules is the same on both sides. Since the membrane allows only the solvent, generally water, but not the dissolved substances to pass, the osmotic pressure causes the solvent to move in the direction of the higher concentration of dissolved particles through the semi-permeable membrane. Reverse osmosis makes use of this principle, but reverses the process. In a concentrated solution which is surrounded by a semi-permeable membrane, a 2

pressure is created which is higher than the natural osmotic pressure. This reverses the osmosis effect and the water is forced out through the membrane. The dissolved substances, which cannot pass the membrane, remain inside in a high concentration. The membranes used in reverse osmosis are very thin, but have to be able to withstand high pressures up to 80 bar in seawater desalinization, for example. Therefore, they are applied to a fluid-permeable carrier layer which can absorb the high pressure. The resulting unit is provided with a separating layer and rolled up to increase the density and ensure an optimal yield with minimum volume. The rolled membrane cartridge is then inserted into a tubeshaped pressure vessel. In large industrial reverse osmosis systems several of these membrane cartridges are usually used in combination, since the size of the units is limited due to design considerations. General requirements in industrial reverse osmosis systems To prevent the membranes from becoming clogged with solid substances floating in the water, these substances are removed by means of pre-filtering. Once a membrane cartridge has become clogged with accumulations of solids, it normally cannot be cleaned and has to be replaced. In addition, oxidation elements such as chlorine have to be removed prior to reverse osmosis, to prevent damage to the membrane by these chemicals. The chlorine compounds are used in the preliminary phase of reverse osmosis systems to prevent biological growth. Prior to the reverse osmosis process, they are removed by means of active carbon filters, after which the ORP value is measured. Compliance with specified ph values should also be monitored during the preliminary phase to prevent further chemical attacks on the membranes and undesired effects such as scaling or fouling. To prevent the precipitation of solids during the concentrating process, chemicals for antiscaling or acids are added by means of a ratio controller or ph controller. The state of the membranes can be checked by measuring their conductivity at the input and output in the permeate, or pure water. Generally this is specified as the percentage retention value (% reject). A value of 95% means that the membrane should remove 95% of all ions. If the actual parameter is less, this is an indication of a defective membrane. Customized solution for monitoring and control tasks Especially for these applications, the Fluid Control Systems specialist Bürkert developed the MultiCELL 8619 multi-channel controller. In reverse osmosis systems, the controller can be used for monitoring functions as a flow indicator, to measure the ORP value or percentage retention value. The 8619 MultiCELL can also be used for control tasks, such as regulation of the ph value 3

and the dosing of chemicals and ratio control. The modular controller is adapted at the factory to the particular application and customer specifications. The standard version includes the user interface, the mainboard and AC adapter, two analog and digital outputs and two digital inputs. Six slots are available for connecting additional boards. The large, configurable graphic display with backlighting can display up to four readings simultaneously. Further parameters and user-specific pages can be displayed by scrolling. Back side of the Bürkert MultiCELL 8619 controller with SD card slot, mainboard (orange), signal input card for ph/orp (white), signal input card for conductivity (green) and signal output card (black). The three free slots are protected by the metal plate The digital and analog signal outputs enable the transfer of process data and status signals. If more than two of these are needed, an output card with two additional digital and two additional analog outputs can be installed. All process values can additionally be stored on SD cards by means of an optional data logger package for computer analysis using any standard software package. The modular design of the new controller makes it possible to implement numerous customized configurations for reverse osmosis systems, explains Volker Erbe, Product Manager Sensors at Bürkert. The uses range from singlechannel measurement The backlight display can display up to four readings simultaneously to complete monitoring of the water quality in reverse osmosis systems. The best way to illustrate this is to describe a few typical applications. Flow transmitter or controller To begin with, the 8619 MultiCELL controller can be used as a mere flow transmitter. For this purpose, the only hardware needed is the mainboard; if required, an additional PID control can be implemented via software. The two digital signal inputs of the mainboard are used as pulse inputs for flow rate measurement. Depending on the task, the flow rate can either be simply measured and displayed or sent to a PLC via the signal outputs. With the optional PID controller software function, however, flow rate control is possible with two independent control loops. The two digital or analog signal outputs then serve as control signals for pumps or control valves. 4

Single-channel analysis transmitter For use as a single-channel analysis transmitter the mainboard is equipped at the factory with a signal input card for ph/orp or conductivity. If several values are to be processed, an additional input card is required for each value. A typical application for single-channel controllers is ph neutralization in industrial waste water treatment. Depending on the set-point deviation, either acid or alkali is added. In addition to the mainboard, the controller requires a signal input card for the ph value. The flow rate measuring function is not activated, but this can be achieved by means of an optional supplement to the PID controller software. The two controller outputs for acid and alkali are generally implemented in the form of pulse frequency modulation via the digital outputs. The pulse frequency is adjusted as the set-point deviation increases. The controller function can be configured as a P controller (for static processes) or PI or PID controller (for dynamic processes). The Bürkert MultiCELL 8619 is a versatile module for central monitoring and control tasks in water treatment systems Conductivity measurement in ultra high purity water systems A typical ultra pure water skid consists essentially of a reverse osmosis unit and an EDI module. For monitoring the water quality, a conductivity measurement is necessary upstream and downstream of the RO module and downstream of the EDI module. In addition, the temperature is measured downstream of the EDI module to ensure uncompensated conductivity monitoring with a separate temperature display in compliance with the USP standard if required. For this application the 8619 requires three signal input cards for conductivity and, for transfer of the signal to a PLC, one additional signal output card. Therefore, all parameters can be sent as analog signals. The temperature compensation often required for ultra pure water is already a standard feature of the unit. Monitoring water quality In industrial reverse osmosis systems, very high demands are placed on the water quality. Less than optimal quality, for example in beverage production, directly affects the flavour of the end product. Accordingly, numerous central parameters in the system have to be monitored and controlled. Especially important is the ratio of permeate to concentrate, the ion retention capacity of the unit, the ph value in the feed water and a minimum amount of chlorine 5

in the supply. This means that the flow rate of permeate and concentrate, the conductivity of the feed water and permeate, as well as the ph and ORP values of the feed water have to be monitored. For these extensive tasks the 8619 MultiCELL is expanded by adding two signal input cards for conductivity and two signal input cards for ph/orp. If the process values are to be sent to a higher-level PLC, two additional signal output cards are also needed. The required software functions are flow rate measurement and the PID function. Design of a reverse osmosis system with the Bürkert MultiCELL 8619 controller The ratio of permeate to concentrate frequently is set manually by means of a manual control valve in the concentrate pipe. This can also be implemented as an automatic flow control, e.g. with a Bürkert control valve with top control, type 8802 continuous. The concentrate flow rate is then adjusted based on the feed water flow rate. The MultiCELL controller also monitors the ion retention capacity (% reject). If a value drops below the lower limit, the system has to be inspected. By adding acid the ph value is adjusted to a value which minimizes scaling and the danger of chemical attack on the membrane. Finally, the controller monitors the chlorine content of the water by means of an ORP measurement. If the value drops below a threshold, the active carbon filter function has to be checked and the filter in the preliminary phase of the system may have to be replaced. 6

Economical, flexible and universal The multi-parameter 8619 MultiCELL can be used to execute practically all central control tasks in reverse osmosis systems with only one modular controller, which can be equipped with additional functions for the particular application. The reduced parts range within the control and monitoring of reverse osmosis systems is advantageous in terms of maintenance, storage and employee training, says Volker Erbe. If several units need to be configured identically, the configuration and parameter data can be optionally stored on SD cards for easy transfer to other units. This facilitates commissioning and also saves time. The continuous control of all essential parameters in a reverse osmosis system ensures consistently high quality and an optimal service life of the membrane cartridges. That not only reduces the costs for the membranes themselves, but also prevents the unnecessary production downtime required for replacement. 7

Contact Do you have questions or can we help you to optimise your systems with our modular multi-channel controllers? Than just contact us? Bürkert Fluid Control Systems Bürkert Werke GmbH Dr. Egon Hüfner Segment Manager Water Christian-Bürkert-Str. 13-17 74653 Ingelfingen Germany Phone: +49 7940 10 91 470 Fax: +49 7940 10 91 204 Email: egon.huefner@burkert.com Website: www.burkert.com 8