Troubleshooting Bit Error Rate Errors on SONET Links

Similar documents
A Brief Overview of SONET Technology

10 Gigabit Ethernet WAN PHY

DigiPoints Volume 1. Student Workbook. Module 5 Growing Capacity Through Technology

Lecture 12 Transport Networks (SONET) and circuit-switched networks

2-port STM-1/OC-3 Channelized E1/T1 Line Card for Cisco Series Internet Routers

It explains the differences between the Plesiochronous Digital Hierarchy and the Synchronous Digital Hierarchy.

Cisco 2-Port and 4-Port OC-3c/STM-1c POS Shared Port Adapters

Overview of SDH and SONET overhead processing commonalities and differences.

Synchronous Optical Network (SONET)

Overview of SDH and SONET overhead processing commonalities and differences.

Configuring POS. POS on the ML-Series Card. ML-Series SONET and SDH Circuit Sizes CHAPTER

Course 13 SDH/SONET multiplexing strategy

Principles of Circuit Switched Networks. John S Graham Indiana University

Configuring EtherChannel and 802.1Q Trunking Between Catalyst L2 Fixed Configuration Switches and Catalyst Switches Running CatOS

Chap 4 Circuit-Switching Networks

Raj Jain. The Ohio State University Columbus, OH These slides are available on-line at:

SDH and WDM A look at the physical layer

Database Replication Error in Cisco Unified Communication Manager

Voice Over IP Per Call Bandwidth Consumption

SDH and WDM: a look at the physical layer

Monitoring and Testing

Packet-over-SONET/SDH

Password Recovery Procedure for the Cisco 3600 and 3800 Series Routers

Troubleshooting the Firewall Services Module

Fundamentals of SONET/SDH

BRI to PRI Connection Using Data Over Voice

Password Recovery Procedure for the Cisco 806, 826, 827, 828, 831, 836, 837 and 881 Series Routers

Protocol Overhead in IP/ATM Networks

Understanding Route Aggregation in BGP

Configuring a Gateway of Last Resort Using IP Commands

Password Recovery Procedure for the Cisco 2900 Series Integrated Services Router

New WAN PHY Approach Proposals

INDEX. cdp command channel command

Course 12 Synchronous transmission multiplexing systems used in digital telephone networks

Note: This case study utilizes Packet Tracer. Please see the Chapter 5 Packet Tracer file located in Supplemental Materials.

Troubleshooting the Firewall Services Module

The Fundamentals of SONET

Interfaces and Payload Testing

Performance Management and Fault Management. 1 Dept. of ECE, SRM University

Network Working Group (PPP)

AT&T Private Line Service OC-192 SERVICE DESCRIPTION AND INTERFACE SPECIFICATION

- T-Carrier Technologies -

Password Recovery Procedure for the Cisco Catalyst 2948G L3, 4840G, and 4908G L3 Switch Routers

Table of Contents. Cisco Configuring a Basic MPLS VPN

Configuring a Load-Balancing Scheme

Chapter 4 T1 Interface Card

Introduction. Background

Cisco 1-Port Channelized STM-1/OC-3 Shared Port Adapter Version 2

3.1 Connecting to a Router and Basic Configuration

Setting Alarms and Inserting Errors

Configuration Management: Best Practices White Paper

Enhancing High-Speed Telecommunications Networks with FEC

Sample Configuration Using the ip nat outside source static

Cisco 1-, 2-, and 4-Port OC-48c/STM-16c POS/ RPR Shared Port Adapter

Configuring DNS on Cisco Routers

: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1)

PA-MC-T3 Multi-Channel T3 Synchronous Serial Port Adapter Enhancement

Sample Configuration Using the ip nat outside source list C

Cisco Configuring Basic MPLS Using OSPF

Catalyst Layer 3 Switch for Wake On LAN Support Across VLANs Configuration Example

Objectives. Router as a Computer. Router components and their functions. Router components and their functions

Configuring Static and Dynamic NAT Simultaneously

24-Port Channelized E1/T1 Line Card Overview

Configuring LACP (802.3ad) Between a Catalyst 6500/6000 and a Catalyst 4500/4000

Understanding Error Checking Using Parity Bytes in SDH/SONET Networks

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

How To Configure InterVLAN Routing on Layer 3 Switches

Lab Configuring OSPF with Loopback Addresses

Lab 7.1.9b Introduction to Fluke Protocol Inspector

Configuring PROFINET

Data Communication Networks and Converged Networks

Packet-over-SONET Interface Commands on the Cisco IOS XR Software

Lab Configure IOS Firewall IDS

Computer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks

Making Ethernet Over SONET Fit a Transport Network Operations Model

Table of Contents. Cisco How Does Load Balancing Work?

Lab Diagramming External Traffic Flows

VictoriaSTM-N/OC-M. Universal, Compact, User-Friendly. SDH/SONET PDH, T-Carrier, ATM and IP

Communication Networks. MAP-TELE 2011/12 José Ruela

Configuring a Leased Line

Configuring the Channelized 12-port CT3/T1 Optical Services Modules

Quick Start Guide. Cisco Small Business. 200E Series Advanced Smart Switches

E1+Jitter+Wander+Data

SRX 210 Services Gateway T1/E1 Mini-Physical Interface Module

Welcome to the Introduction to Controller Area Network web seminar My name is William Stuart, and I am a Applications Engineer for the Automotive

Table of Contents. Cisco Using the Cisco IOS Firewall to Allow Java Applets From Known Sites while Denying Others

WANs and Routers. M.Sc. Aleksandra Kanevce M.Sc. Aleksandra Bogojeska

Cisco - Standard Break Key Sequence Combinations During Password Recovery

The Purpose and Use of the Configuration Register on All Cisco Routers

Syslog Server Configuration on Wireless LAN Controllers (WLCs)

CCT vs. CCENT Skill Set Comparison

Lab Creating a Logical Network Diagram

VPN 3000 Concentrator Bandwidth Management Configuration Example

Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding

Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26

10GbE Implementation Architectures

Quick Start Guide. Cisco Small Business. 300 Series Managed Switches

Cisco T1 Layer 1 Troubleshooting

Channel Bonding in DOCSIS 3.0. Greg White Lead Architect Broadband Access CableLabs

Transcription:

Troubleshooting Bit Error Rate Errors on SONET Links Document ID: 16149 Contents Introduction Prerequisites Requirements ponents Used Conventions Background Information BIP 8 Bytes in SONET Overhead When Do Particular BIP Errors Occur? BER Set BER Thresholds Report BIP Errors How Does a Router Respond to BIP Errors? Steps to Troubleshoot Bit Errors on ATM Interfaces Related Information Introduction This document explains bit interleaved parity (BIP 8) checks on frames that a packet over SONET (POS) router interface transmits. Prerequisites Requirements Cisco recommends that you have knowledge of these topics: SONET (Synchronous Optical NETwork). GSR (Gigabit Switch Router). ESR (Edge Services Router). ponents Used This document is not restricted to specific software and hardware versions. The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command. Conventions Refer to Cisco Technical Tips Conventions for more information on document conventions.

Background Information When the number of BIP errors crosses a threshold that you can configure, the router reports log messages similar to this: Feb 22 08:47:16.793: %LINEPROTO 5 UPDOWN: Line protocol on Interface POS3/0, changed state to down Feb 22 08:47:16.793: %OSPF 5 ADJCHG: Process 2, Nbr 12.122.0.32 on POS3/0 from FULL to DOWN, Neighbor Down Feb 22 08:48:50.837: %SONET 4 ALARM: POS3/0: SLOS Feb 22 08:48:52.409: %LINK 3 UPDOWN: Interface POS3/0, changed state to down Feb 22 08:50:47.845: %SONET 4 ALARM: POS3/0: B1 BER exceeds threshold, Feb 22 08:50:47.845: %SONET 4 ALARM: POS3/0: B2 BER exceeds threshold, Feb 22 08:50:47.845: %SONET 4 ALARM: POS3/0: B3 BER exceeds threshold, Feb 22 08:50:52.922: %SONET 4 ALARM: POS3/0: SLOS cleared Feb 22 08:50:54.922: %LINK 3 UPDOWN: Interface POS3/0, changed state to up This document provides tips on how to troubleshoot threshold crossing (TC) bit error rate (BER) alarms. BIP 8 Bytes in SONET Overhead SONET is a protocol that uses an architecture of layers: section, line and path. Each layer adds some number of overhead bytes to the SONET frame, as illustrated here: Path Overhead Section Overhead A1 Framing B1 BIP 8 A2 Framing E1 Orderwire A3 Framing E1 User J1 Trace B3 BIP 8 D1 Data D2 Data D3 Data C2 Signal Label H1 Pointer H2 Pointer H3 Pointer Action G1 Path Status Line Overhead B2 BIP 8 K1 K2 F2 User Channel D4 Data D5 Data D5 Data H4 Indicator D7 Data D8 Data D9 Data Z3 Growth D10 Data D11 Data D12 Data Z4 Growth S1/Z1 Sync Status/Growth M0 or M1/Z2 REI L Growth E2 Orderwire Z5 Tandem Connection

Importantly, each layer uses a single, interleaved parity byte to provide error monitoring across a particular segment, along the end to end SONET path. This parity byte is known as BIP 8, which is an abbreviation for bit interleaved parity. BIP 8 performs an even parity check on the previous Synchronous Transport Signal level 1 (STS 1) frame. During the parity check, the first bit of the BIP 8 field is set so that the total number of ones in the first bit of all octets of the previously scrambled STS 1 frame is an even number. The second bit of the BIP 8 field is used exactly the same way, except that this bit performs a check on the second bits of each octet, and so on. The Bellcore GR 253 standard for SONET networks defines the bytes over which a particular parity error is calculated. This table describes the portion of the SONET frame that a particular BIP byte covers: Byte Portion of Frame Covered Span Monitored Error Indication B1 B2 B3 Entire frame, after scrambling. Line overhead and synchronous payload envelope (SPE) (including path overhead and payload), before scrambling. SPE (including path overhead and payload), before scrambling. Monitors bit errors between two adjacent STEs (Section Terminating Equipment), such as a regenerator. Monitors bit errors between two adjacent LTEs (Line Terminating Equipment), such as an Add/Drop Multiplexer Monitors bit errors (ADM) or DCS. between two adjacent Path Terminating Equipments (PTEs), such as two router POS interfaces. Differences indicate the occurrence of section level bit errors. Differences indicate the occurrence of line level bit errors. Differences indicate the occurrence of path level bit errors. When Do Particular BIP Errors Occur? Under some conditions, the output of the show controllers pos command reports only one level of BIP errors. The reason is that the reported BIP errors vary depending on where the code violation or bit flip actually occurs. In other words, parity bytes monitor and detect errors over different parts of a SONET frame. A BIP error can occur anywhere in the frame. This diagram illustrates a typical SONET network:

When you connect two router POS interfaces point to point, over a dense wavelength division multiplexing (DWDM) link without intermediate SONET or Synchronous Digital Hierarchy (SDH) equipment, all three BIP mechanisms monitor the same segment, and typically detect the same errors. However, in this configuration, B2 must provide the most accurate bit error count. An increment in B1 and B2 errors, without an increment in B3 errors is statistically improbable. This condition occurs only if the errors affect parts of the frame that the B3 byte does not monitor. Recall that the B3 byte covers the path overhead and payload section. An increment in B3 errors points to a corrupt SPE or payload portion. The path overhead does not change until a remote PTE terminates the SONET frame. ADMs and regenerators do not terminate the path overhead and must not report B3 errors. Thus, a condition in which B3 errors increase only indicates that either the local or remote router interface corrupts the path overhead or payload. In addition, when the B3 check covers the longest span, the chance of bit flips is greater. Typically, the end to end path spans a few monitored segments between LTEs. The B2 parity check must monitor these segments. SONET interfaces must not report an increase in BIP errors during a loss of signal or loss of frame alarm condition. However, a burst of B1 errors can occur during the time the interface takes to declare the alarm. This burst can last for up to 10 seconds, which is the interval at which the line cards in the Cisco 12000 and 7500 router series report statistics to the central route processor. In addition, you must understand that BIP errors have different error detection resolutions, which are explained here: B1: B1 can detect up to eight parity errors per frame. This level of resolution is not acceptable at OC 192 rates. Even numbered errors can elude the parity check on links with high error rates. B2: B2 can detect a far higher number of errors per frame. The exact number increases as the number of STS 1s (or STM 1s) increases in the SONET frame. For example, an OC 192/STM 64 produces a 192 x 8 = 1536 bit wide BIP field. In other words, B2 can count up to 1536 bit errors per frame. There is considerably less chance of an even numbered error that eludes the B2 parity calculation. B2 offers superior resolution when compared to B1 or B3. Therefore, a SONET interface can report B2 errors only for a particular monitored segment. B3: B3 can detect up to eight parity errors in the entire SPE. This number produces acceptable resolution for a channelized interface because, (for example) each STS 1 in an STS 3 has a path overhead and B3 byte. However, this number produces poor resolution over concatenated payloads in which a single set of path overhead must cover a relatively large payload frame. Note: When you initiate an IOS reload or a microcode reload, the POS interface is reset, and so is the framer. The reset downloads the microcode on the interface again. In some cases, this process can generate a small burst of bit errors.

BER The BER counts the number of detected BIP errors. In order to calculate this value, compare the number of bit errors to the total number of bits transmitted per unit of time. Set BER Thresholds POS interfaces use the BER to determine whether a link is reliable. The interface changes the state to down if the BER exceeds a threshold that you can configure. All three SONET layers use a default BER value of 10e 6. The show controllers pos command displays the current values. RTR12410 2#show controllers pos 6/0 POS6/0 SECTION LOF = 0 LOS = 2 BIP(B1) = 63 LINE AIS = 0 RDI = 1 FEBE = 1387 BIP(B2) = 2510 PATH AIS = 0 RDI = 1 FEBE = 17 BIP(B3) = 56 LOP = 2 NEWPTR = 0 PSE = 0 NSE = 0 Active Defects: None Active Alarms: None Alarm reporting enabled for: SF SLOS SLOF B1 TCA B2 TCA PLOP B3 TCA Framing: SONET APS COAPS = 8 PSBF = 1 State: PSBF_state = True ais_shut = FALSE Rx(K1/K2): 00/00 S1S0 = 00, C2 = CF Remote aps status working; Reflected local aps status non aps CLOCK RECOVERY RDOOL = 0 State: RDOOL_state = False PATH TRACE BUFFER : STABLE Remote hostname : 12406 2 Remote interface: POS2/0 Remote IP addr : 48.48.48.6 Remote Rx(K1/K2): 00/00 Tx(K1/K2): 00/00 BER thresholds: SF = 10e 3 SD = 10e 6 TCA thresholds: B1 = 10e 6 B2 = 10e 6 B3 = 10e 6 Use the pos threshold command to adjust the threshold values from the defaults. router(config if)#pos threshold? b1 tca B1 BER threshold crossing alarm b2 tca B2 BER threshold crossing alarm b3 tca B3 BER threshold crossing alarm sd ber set Signal Degrade BER threshold sf ber set Signal Fail BER threshold Signal failure (SF) BER and signal degrade (SD) BER are sourced from B2 BIP 8 error counts (as is B2 TCA). However, SF BER and SD BER feed into the automatic protection switching (APS) machine, and can lead to a protection switch (if you have configured APS). B1 BER Threshold Crossing Alert (B1 TCA), B2 TCA, and B3 TCA only print a log message to the console if you have enabled reports for them.

Report BIP Errors The pos report {b1 tca b2 tca b3 tca } command allows you to configure the SONET alarms that you want to report. A router common reports TC alarms when the router declares a path level or line level alarm. This sample output shows how a POS interface on a Cisco router reports a high BER. Aug 7 04:32:41 BST: %SONET 4 ALARM: POS4/6: B1 BER exceeds threshold, Aug 7 04:32:41 BST: %SONET 4 ALARM: POS4/6: B2 BER exceeds threshold, Aug 7 04:32:41 BST: %SONET 4 ALARM: POS4/6: SD BER exceeds threshold, Aug 7 04:32:41 BST: %SONET 4 ALARM: POS4/6: B3 BER exceeds threshold, Aug 7 04:32:44 BST: %SONET 4 ALARM: POS4/6: SLOF cleared Aug 7 04:32:44 BST: %SONET 4 ALARM: POS4/6: PPLM cleared Aug 7 04:32:44 BST: %SONET 4 ALARM: POS4/6: LRDI cleared Aug 7 04:32:44 BST: %SONET 4 ALARM: POS4/6: PRDI cleared Aug 7 04:32:46 BST: %LINK 3 UPDOWN: Interface POS4/6, changed state to up Aug 7 04:32:47 BST: %LINEPROTO 5 UPDOWN: Line protocol on Interface POS4/6, changed state to up How Does a Router Respond to BIP Errors? When a Cisco POS interface detects a BIP error, the interface does not discard the frame. The reason is that the BIP value carried in the current frame is the value calculated on the previous frame. In order to calculate the BIP value on the entire frame, the entire frame needs to be created. At SONET speeds, a frame is quite large and would occupy a large amount of buffer resources. The actual approach is to avoid any delay in sending the frame that normally occurs until the parity calculation. This approach minimizes buffer requirements. Parity calculation occurs after the actual transmission of the frame. For example, the parity value for frame 100 is placed in the BIP field of frame 101. As long as the SONET framer can maintain frame alignment, the frame is sent to the layer 2 protocol. If the layer 2 data within the frame is corrupt, the frame is dropped as a cyclic redundancy check (CRC). Steps to Troubleshoot Use these steps to troubleshoot the SONET alarms and defects that this document describes: Check the optical power levels. Ensure that the link has sufficient attenuation. Ensure that bad or dirty fiber does not cause the bit errors. plete these steps: 1. Clean the physical fiber and the interfaces. 2. Swap the cables. 3. Check any patch panels. Ensure proper clock settings. Draw out the topology, and check for any transport devices or signal regenerators in between the two ends. Check and clean these devices also. Perform hard loopback tests. Loop a single strand of fiber into the transmit and receive connectors of the interface. Then ping the IP address of the interface to ensure that the interface is capable of actual data flow. For more information, refer to Understanding Loopback Modes on Cisco Routers. When you contact the Cisco Technical Assistance Center (TAC):

1. Collect output from the show running config command. 2. Collect output from the show controllers pos details command. Determine the number of SONET level bit errors. 3. Execute the clear counters command. 4. Wait a few minutes. 5. Capture the output of show controllers pos details command again for the same interface. Here is a table that appears in the Cisco 10000 Series ESR Troubleshooting Guide. This table provides the steps to troubleshoot BIP TC alarms. Note: A known issue with Gigabit Switch Router (GSR) POS cards is that a hard loop results in ping loss because the GSR rate limits packets are pushed to the Gigabit Route Processor (GRP). For more information, refer to Cisco bug ID CSCea11267 (registered customers only). Alarm Type and Severity TCA_B1 Threshold crossing alarm B1 Minor TCA_B2 Threshold crossing alarm B2 Minor TCA_B3 Threshold crossing alarm B3 Minor BER_SF Signal Fail condition Minor BER_SD Signal degrade condition Minor Alarm Symptoms For alarm types: TCA_B1 TCA_B2 TCA_B3 Alarm messages appear in the CLI and logs. BER_SF and BER_SD alarms result in APS cutovers. Recommendation In all cases, test the quality of the cables and connections. Same as TCA_B1. Same as TCA_B1. In both cases, test the quality of the cables and connections. You can specify these BER thresholds. Bit Errors on ATM Interfaces Campus ATM switches, for example, the LightStream 1010 and Catalyst 8500, do not support a command to configure the TC alarm value on ATM over SONET interfaces. Sep 19 02:21:44: %SONET 4 ALARM: ATM11/0/0: B1 BER below threshold, TC alarm cleared Sep 19 02:21:44: %SONET 4 ALARM: ATM11/0/0: B2 BER below threshold, TC alarm cleared

Troubleshoot TC alarms on ATM switches with the same steps as on POS interfaces. Bit errors point to a physical layer problem between the ATM switch and other devices in the path. Related Information Understanding Loopback Modes on Cisco Routers Optical Technology Support Optical Products Support Technical Support & Documentation Cisco Systems Contacts & Feedback Help Site Map 2014 2015 Cisco Systems, Inc. All rights reserved. Terms & Conditions Privacy Statement Cookie Policy Trademarks of Cisco Systems, Inc. Updated: Sep 12, 2005 Document ID: 16149