construction et l amplification de la Les nanoparticules d or pour la réponse des Biocapteurs Souhir Boujday, Anne-Laure Morel et Claire-Marie Pradier

Similar documents
DNA NANOWIRES USING NANOPARTICLES ECG653 Project Report submitted by GOPI

STUDENT BACKGROUND READING FOR EXPERIMENT C: COLORIMETRIC GOLD NANOSENSOR

Jeong-Yeol Yoon. Introduction to Biosensors. From Electric Circuits to Immunosensors. f) Springer

h e l p s y o u C O N T R O L

Time out states and transitions

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM

Development of Self-Sorting G-Protein Coupled Receptor Microarrays

Components for Infrared Spectroscopy. Dispersive IR Spectroscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

Infrared Spectroscopy 紅 外 線 光 譜 儀

Combined atomic force microscope and acoustic wave devices: application to electrodeposition.

Introduction to Data Analysis. Q-Sense Basic Training, April 4-5, 2006

E F G. Overview of the activities. SAPIE ZA Università di Roma - Laboratorio di Fotonica Molecolare

Nanostructured transducers as sensing platforms for biomedical applications

Back to Basics Fundamentals of Polymer Analysis

Paper No APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION

Piezoelectric Transducers and Applications

INFRARED SPECTROSCOPY (IR)

IR and Raman spectroscopy. Peter Hildebrandt

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Risks in Raw Meat Industry

PIEZOELECTRIC FILMS TECHNICAL INFORMATION

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

BNG 331 Cell-Tissue Material Interactions. Biomaterial Surfaces

Introduction to Biosensors. Professor Brian Birch LIRANS University of Luton UK

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

Nanotechnology for Food Processing and Packaging

Pulsed laser deposition of organic materials

Etudes in situ et ex situ de multicouches C/FePt

Copyright by Mark Brandt, Ph.D. 12

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

CHEMICAL SENSORS 1. DEFINITION

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

FTIR Measurement Data Storage and Control Thin Film Sample Measurement Methods and Precautions ---5 Question ---8

Determining the Structure of an Organic Compound

Symmetric Stretch: allows molecule to move through space

Infrared Spectroscopy: Theory

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

1 The water molecule and hydrogen bonds in water

Keysight Technologies How to Choose your MAC Lever. Technical Overview

Spectroscopy and Regions of the Spectrum

Enhancement of Breakdown Strength and Energy Density in

Using Piezoelectric Printing to Pattern Nanoparticle Thinfilms. Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara, California USA

Simple and scalable fabrication approaches of Nanophotonic structures for PV

Raman and AFM characterization of carbon nanotube polymer composites Illia Dobryden

Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray

2. Molecular stucture/basic

Biomaterials in tissue engineering

DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY

Surface Plasmon Resonance Used to Monitor Biological Interactions. Mark Jennings. In Fulfillment Of Chem. 226 Paper Requirement. University of Vermont

Physics 30 Worksheet # 14: Michelson Experiment

Single Protein Nanobiosensor. Grid Array (SPOT-NOSED)

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Covalent Conjugation to Cytodiagnostics Carboxylated Gold Nanoparticles Tech Note #105

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS

Raman Spectroscopy Basics

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

5.33 Lecture Notes: Introduction to Spectroscopy

New enhancement strategies for plasmon-enhanced fluorescence biosensors

CAPITOLO III MATERIALI ASSEMBLATI E AUTOASSEMBLATI. Photonics and Biophotonics Organics Synthesis - PhoBOS

Infrared Spectroscopy

Applications of Infrared Multiple Angle Incidence Resolution Spectrometry

SPM 150 Aarhus with KolibriSensor

It has long been a goal to achieve higher spatial resolution in optical imaging and

Electrophoretic Gold Nanoparticles Depostion On Carbon Nanotubes For NO 2 Sensors

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

Molecular Spectroscopy

COURSE TITLE COURSE DESCRIPTION

1. PECVD in ORGANOSILICON FED PLASMAS

Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Surface Characterization - Marie-Geneviève Barthés-Labrousse

Photoinduced volume change in chalcogenide glasses

STM and AFM Tutorial. Katie Mitchell January 20, 2010

Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O.

Raman spectroscopy Lecture

Introduction to Fourier Transform Infrared Spectrometry

Organic Chemistry Tenth Edition

The Water Race: Hydrophobic & Hydrophilic Surfaces

LabRAM HR. Research Raman Made Easy! Raman Spectroscopy Systems. Spectroscopy Suite. Powered by:

Chapter 6 Metal Films and Filters

CREOL, College of Optics & Photonics, University of Central Florida

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

ATOMIC FORCEMICROSCOPYASTOOL INCELLBIOLOGICAL RESEARCH FORGROUNDBASEDANDIN-FLIGHTSTUDIES

Acousto-optic modulator

2 Absorbing Solar Energy

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

13C NMR Spectroscopy

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Steve Harris. UC Berkeley

Preface Light Microscopy X-ray Diffraction Methods

Edited by. C'unter. and David S. Moore. Gauglitz. Handbook of Spectroscopy. Second, Enlarged Edition. Volume 4. WlLEY-VCH. VerlagCmbH & Co.

Solution problem 13: Absorption of Light by Molecules

Reflection Electron Microscopy and Spectroscopy for Surface Analysis

Lecture 15: Enzymes & Kinetics Mechanisms

Dissertation zur Erlangung des Grades. Doktor der Naturwissenschaft. am Fachbereich Chemie und Pharmazie. der Johannes Gutenberg-Universität in Mainz

Joshua Blose, Ph.D., Biochemistry

RAMAN SCATTERING INDUCED BY UNDOPED AND DOPED POLYPARAPHENYLENE

MISCIBILITY AND INTERACTIONS IN CHITOSAN AND POLYACRYLAMIDE MIXTURES

Transcription:

Les nanoparticules d or pour la construction et l amplification de la réponse des Biocapteurs ouhir Boujday, Anne-Laure Morel et Claire-Marie Pradier Laboratoire de Réactivité de urface, UMR 7197, Université Pierre et Marie Curie CNR Réunion plénière du GdR Or-Nano 16, 17 et 18 mars 2011 Toulouse

What is a biosensor? Biosensors are defined as analytical devices incorporating a biological material a biologically derived material or a biomimic intimately Intimate associated association with or integrated within a physicochemical transducer or transducing microsystem. Biosensors & Biolectronics 2009 Antibodies, DNA, Enzymes, Aptamers etc. Metal or oxide surface gold, silicon, carbon etc. Recognizes with high affinity and selectivity the target of interest Allows measuring the molecular recognition phenomena Must guaranty an efficient immobilization of the biological element souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 2

Elaboration of Gold based biosensors Reducing response-time Increasing selectivity Increasing sensitivity High amount / good accessibility / preserved biological activity R R R R s s s s O OH R R # R R # R R # R R # s s s s s s s s Must guaranty an efficient immobilization of the biological element souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 3

Optimization (and transduction) tools : s s s s Vibrational spectroscopies IR, Raman PM-IRRA, ATR, DRIFT, ER X-ray Photoelectron pectroscopy I R Rayons X e - Atomic Force Microscopy CO amide I O 1655 cm -1 Increasing protein amount R 1 R 1 C HN R 2 IR beam at grazing incidence ignal surface enhanced No contribution of the isotropic environment s s s s CN + NH amide II 1550 cm -1 2300 2100 1900 1700 wavenumbers (cm-1) 1500 1300 souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 4 I R

And, in-situ sensitive transduction techniques Fourier Transform urface Plasmon Resonance FT-PR Coated film ensor surface ample media Glass slide Measures the wavenumber of maximum extinction of total internal reflection of light (at a fixed angle of incidence) Reflected beam P-polarized Incident beam souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 5

And, in-situ sensitive transduction techniques Quartz Cristal Microbalance with QCM-D dissipation Piezoelectric quartz disc Measures mass changes and viscoelastic properties in realtime and with nano-sensitivity Gold electrodes ensor surface Frequency shift of an oscillating quartz Mass change C f n auerbrey relation (1959) m= - C = 17.7 ng Hz -1 cm -2 for a 5 MHz quartz crystal. n = 1,3,5,7 is the overtone number. souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 6

Nanoparticles for Biosensors Either grafted on the transducer surface Nanostructuring surfaces Increasing grafting surfaces or linked to the biological material Increase sensitivity of optical techniques Increasing piezoelectric / gravimetric response souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 7

Why grafting nanoparticles? Ab amount Ab accessibility efficient immunosensor Increase Ab density Enhance flexibility Preserve accessibility H H H Increase sensitivity of optical techniques souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 8

Gold nanoparticles synthesis 0.05 Absorbance (au) 15 nm 60nm 400 500 600 700 800 900 1000 Longueur d onde (nm) souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 9

urface functionalization to graft Nanoparticles hexanedithiol : H 2 thiols extremities bound to surface free to bind nanoparticles H + Long chain (preserve flexibility) Can we avoid bridging? H b/f=1 b/f>1 souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 10

XP characterization of surface functionalization Optimizing grafting conditions: olvent, temperature, time (XP analysis) c 1000 kcts a f b 162.0 163.3 bound to free b/f=1 b/f>1 d 2500 kcts 1000 kcts 5000 kcts b 163.6 164.9 H 168 163 Binding energy (ev) 158 168 163 Binding energy (ev) 158 souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 11

AFM characterization of nanoparticles grafting I Optimizing grafting conditions: Temperature, time (AFM) souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 12

AFM characterization of nanoparticles grafting II a b c d souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 13

Covalent attachment of Nanoparticles? urface Enhanced Raman cattering c b 1072 1303 2852 Raman ignal (au) 2550 654 1435 2927 2927 1140 1265 H H H H H H H a 400 600 800 1000 1200 1400 Raman hift (cm -1 ) 2500 2700 2900 souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 14

Building of a NP-Biosensor H H H H H H NP immunosensor Planar immunosensor Mercaptoundecanoic acid Protein A anti-rigg BA rigg souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 15

PM-IRRA results: planar immunosensor 0.04 Planar 14 12 10 8 6 4 PM-RAIR signal (au) amide band area (au) anti-rigg PrA BA rigg anti-rigg rigg 2 1900 1700 1500 Wavenumbers (cm -1 ) 1300 BA PrA Amide band area increase upon protein adsorption rigg immobilization anti-rigg/rigg = 4.2 0 PrA BA rigg antirigg souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 16

PM-IRRA results: planar vs 3D 0.04 3D anti-rigg 14 12 10 8 6 4 PM-RAIR signal (au) amide band area (au) H H H H H H Planar PrA BA rigg anti-rigg rigg 2 1900 1700 1500 Wavenumbers (cm -1 ) 1300 2 times more PrA 4 times more rigg anti-rigg/rigg = 2.1 BA PrA 0 PrA BA rigg antirigg increasing Ab amount preserving their accessibility. Boujday et al. Coll. urf. (2010) souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 17

PR Results: planar immunosensor 120 110 Planar 500 anti-rigg 100 400 300 200 wavenumber shift (cm -1 ) 90 80 70 60 50 anti-rigg PrA BA rigg 40 30 20 10000 9500 9000 8500 rigg BA PrA 8000 7500 100 0 PrA BA rigg anti-rigg Wavenumber shift of maximum extinction upon protein adsorption rigg immobilization anti-rigg/rigg = 3.7 souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 18

PR Results planar vs 3D 120 110 3D 500 anti-rigg 100 90 80 70 60 50 H H H 400 300 200 wavenumber shift (cm -1 ) H H H anti-rigg Planar PrA BA rigg 40 rigg 100 30 20 10000 9500 9000 8500 PrA BA 8000 7500 0 PrA BA rigg anti-rigg 2 times more PrA 2 times more rigg anti-rigg/rigg = 2.7 increasing Ab amount preserving their accessibility souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 19

ummary and perspectives Despite particles size: enhancement of protein amount by a factor 2 and accessibility is preserved! souhir.boujday@upmc.fr GdR Or-Nano, Mars 2011, Toulouse 20

Thank You Réunion plénière du GdR Or-Nano 16, 17 et 18 mars 2011 Toulouse