Section Fiber Optic Cable and Equipment

Similar documents
DIVISION 27 COMMUNICATIONS. A. System design shall be completed by a Registered Communications Distribution Designer (RCDD).

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE FOR TRAFFIC SIGNAL INTERCONNECT JANUARY 19, 2007

SECTION FIBER OPTIC CABLE AND ACCESSORIES

NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION STRUCTURE CABLING TESTING

home site map help ECMS Project: Standard / Federal Oversight Advertised

SECTION TELECOMMUNICATION ROOMS

CORNING CABLE SYSTEMS GENERIC SPECIFICATION FOR TIGHT BUFFER OPTICAL FIBER CABLES FOR INTER- AND INTRABUILDING APPLICATIONS.

Presenters Brett Weiss, Gabe Martinez, Brian Kroeger.

SECTION TESTING OF FIBER OPTIC CABLES

SECTION COMMUNICATIONS OPTICAL FIBER OSP CABLING

Fiber Optic Cable Assemblies. Pigtails, Jumpers (simplex and duplex), Fanouts, Pre-connectorized Multi-Fiber Cable

Patch Cords for Data Center Applications

UNIFIED FACILITIES GUIDE SPECIFICATIONS

Reliable, Consistent, Quality

SECTION 680 FIBER OPTIC CABLE DESCRIPTION

Special Specification 6033 Computerized Transportation Management System

Fiber-to-the-Home/FTTH

Pretium Connector Housings

ATTACHMENT F 050R CABLE AND WIRING SERVICES FUNCTIONAL AREA I PRICE PROPOSAL FORM Amendment 6

TC Grounding and Bonding for Telecommunications Systems

Technical Bulletin. Guidelines For Testing And Troubleshooting Fiber Optic Installations

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE AND COMPONENTS. January 15, 2016

Pretium EDGE HD Solutions

SECTION ( ) FIRE DETECTION AND ALARM SYSTEM

1. Furnish and install faceplate and modular jacks at each single gang outlet as described below:

UT Southwestern Medical Center Information Resources Cable Installation Standard

SECTION COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

SECTION CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

The following terms are defined within the context of the fiber optic industry

HOUSTON COMMUNITY COLLEGE HCC ALIEF CAMPUS MAIN BUILDING, FIRST, SECOND & FOURTH FLOORS RENOVATION ISSUE DATE:

CHARTER TOWNSHIP OF SHELBY REQUEST FOR PROPOSAL. Fiber Optic and Data Cabling Project Shelby Township Police Building

ADC-APC Integrated Cisco Data Center Solutions

METER REQUIREMENTS GENERAL REQUIREMENTS SECTION D

SECTION ACCESS CONTROL SYSTEM. CONDITIONS OF THE CONTRACT AND DIVISION 1, as applicable, apply to this Section.

Rittal s Comprehensive Family Of... NETWORK RACK SOLUTIONS

Section Grounding and Bonding for Communications

CalMod Design-Build Electrification Services

Reduced depth High Density Cabinet HDC with 19 swing frame 36, 40 and 45 U

All work must conform to the National Electric Code, latest edition, and all other applicable codes and regulations.

SPECIFICATION STANDARD OPTICAL FIBER BACKBONE CABLING

The Contractor shall furnish and install all shielded power cable suitable for use on this project.

Discontinued. Volition. Fiber Optic Cable. 3Innovation

Polymer Coated Fiber Cable (PCF)

FIRE ALARM AND DETECTION SYSTEMS SECTION 16721

Fiber Optic Specifications

BIX Cross-Connect System Distribution Connectors, Multiplying Connectors and Modular Jack Connectors

Optical Fiber Data Center Field Testing. ANSI/BICSI Data Center Design and Implementation Best Practices

1.1 SYSTEM DESCRIPTION.1 Data system includes data outlets and wiring for office and school applications.

Structured Wiring Specifications ERAU Daytona Beach Campus (Dec )

FIBER OPTIC APPLICATION IN A PROFIBUS NETWORK

Fiber Plant Design Considerations for Active DAS Mike Brownson VP DAS Technical Solutions Hutton Communications

SECTION OPTICAL FIBER CABLES AND ACCESSORIES. A. Interior Raceways, Fittings, and Accessories: Section

Managing High-Density Fiber in the Data Center: Three Real-World Case Studies

fiberopt Whirlwind Fiber Optic Solutions product guide Ling Rd. Rochester, NY whirlwindusa. com

Mini Power-Zone Unit Substation Product Description. Product Description. Features. Typical Applications

SUGGESTED SPECIFICATION for Series 185 Service Entrance Rated Automatic Transfer Switches

Scope: Communications and Electronic Systems addressed in this section include:

NUIG Campus Network - Structured Cabling System Standards Information s Solutions & Services (ISS)

SECTION HEATING, VENTILATION AND AIR CONDITIONING EQUIPMENT

SECTION SIGNAL WIRE AND CABLE

Wall Mounted Products

Accelerating Light. Copper Cabling Solutions. Category 6A

DEPARTMENTAL REGULATION

Specifying an IT Cabling System

TrueAlarm Fire Alarm Systems

SECTION TELECOMMUNICATIONS SYSTEM (Cat 6)

SECTION 611 ACCEPTANCE PROCEDURES FOR TRAFFIC CONTROL SIGNALS AND DEVICES

SECTION TELECOMMUNICATIONS ACCEPTANCE TESTING

Cable Installation Project

Cabling Services (price per pull) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Multiple Solutions for Connecting Multiple Dwelling Units (MDUs) WHITE PAPER

Data Center. Pre-terminated. Patch Panel System. Cabling Systems Simplified. Patch Panels. 10G + Gigabit. Patch Cords. Plug & Play Installation

DIVISION 26 - ELECTRICAL SECTION CABLES FOR INSTRUMENTATION

Structured and Point to Point Network Cabling for Industrial Automation

4RU High Density Shelf Installation Instructions

Fiber Optic Cable

PURE : REliable planning of data center cabling

ANSI/TIA/EIA A, Commercial Building Telecommunications Cabling Standard.

Fiber Optic Cordage. Interconnect A Furukawa Company. Product Description. Why OFS Interconnect Cordage?

Aerial Fibre Optics. Complete One Stop Solution for Aerial Fibre Optics. OPGW Cable and Fittings for OPGW

Generic Category 5e Cabling Specification

AERIAL FIBER OPTIC CABLE PLACEMENT

COMMUNICATIONS

HIGH SPEED COMMUNICATIONS PLENUM CABLE CATEGORY 5e CMP FEP JACKETED, PVC-FREE UNSHIELDED TWISTED PAIR (UTP)

Generator DoCKInG StatIonS

Section 21. Telecommunication Hardware. BuyLog Catalog 21-1

Telecommunications Systems Narrative Page 1 The Engineering Enterprise

Cabling Requirements for the District of Columbia on behalf of the Criminal Justice Coordinating Council

PHOENIX OPTIX WIRING AND INTERCONNECT SOLUTIONS

ADC Structured Cabling Solutions

Plug & Play Universal Systems

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

APPLICATIONS ROV & AUV SEISMIC PRODUCTION SYSTEMS DOWNHOLE JUMPER & CABLE SYSTEMS DRILLING CONTROL

NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION GROUNDING AND BONDING FOR COMMUNICATION SYSTEMS

INTELLIGENT INFRASTRUCTURE MANAGEMENT

Fiber Optics in Harsh Environment Applications

Guidelines. LANscape Solutions Recommended Fiber Optic Test Guidelines. Table of Contents. 1. Introduction. 2. Why Test? 1. Introduction...

SOHOline and SOHO Slimline The SOHOline and SOHO Slimline offer a modular, sturdy and compact design

Networks. The two main network types are: Peer networks

Transcription:

Section 16710 Fiber Optic Cable and Equipment 1 GENERAL The work specified in this Section consists of the design, furnishing, and installing of a fiber optic cable system in accordance with this specification. The work shall include a Fiber Optic (FO) Cable path from West Comm. node to the Comm. nodes at: Civic, Arsenal, 49 th St, and Phil CSH at Phil-Amtrak interlocking along the Regional Rail Elwyn Line and Philadelphia Airport. All communications work shall be in conducted accordance with the requirements of this Section, as well as those requirements as described within these construction specifications. A. The Contractor shall provide a Fiber Optic Cable System (FOCS), including cable, cable attachments, cable supports, cable termination equipment, cable splice equipment, cable system installation, cable testing, and all associated materials and services. The FOCS points of access shall be: 1. West Communications Shelter (West); located in the 30th Street yard (existing). 2. Walnut RIH shelter (Walnut); located south of Walnut Street (existing). 3. CSH Cab Signal House (CSH); located 100 ft north of the Walnut RIH (proposed). 4. University City Communications Shelter (Univ. City); located at University City Station (existing). 5. Civic CIL Shelter (Civic); located 1,500 ft south of Univ. City (proposed). 6. Arsenal RIH Shelter (Arsenal); located 3,200 ft south of Univ. City (existing). 7. Arsenal CIL shelter (Arsenal CIL); located 100 ft south of Arsenal radio interface housing (RIH) (proposed). 8. 49th Street Communications shelter (49th St); Located at 49th St Station (existing). 9. Phil CSH shelter (Phil-Amt interlocking) located 3300 ft south of Elwin/ Airport turnout in Arsenal interlocking (proposed). See Appendix for Cable Block Diagram for specific routing details (Sheet 1). B. The FO Cable shall be: 1. All Dielectric Self-Supporting (ADSS), Single Mode (SM), Double Jacketed, Water blocking layer, Low Smoke Zero Halogen (LSZH), loose tube. 2. 144 Strand, NFPA-130, Gel-Filled buffer tube for Transit tunnel use. 3. 144 Strand, 250 ft Span with NESC Heavy Load, Gel-Filled Buffer tube for aerial use. 4. 48 Strand, 250 ft Span with NESC Heavy Load, Gel-Filled Buffer tube, for aerial use. 5. 24 strand, 250 ft Span with NESC Heavy Load, Gel-Filled Buffer tube, for aerial use. Page 1 of 8 November 2015

C. There shall be 50 ft of cable stored in a Contractor provided slack enclosure for each cable entering and leaving a communications node. D. In the communications node, the cable shall be spliced in an accessible wall mount splice enclosure with sufficient capacity to allow for all pass through and pigtail splices. The splice enclosure shall have front doors, be supplied with cable entry plates which allow various entry options including standard cable entry, routing and guide plates along with clips. E. Factory terminated single mode ST UPC pigtails, shall be installed in the fiber optic termination housing and routed into the wall mount fiber optic splice housing where they shall be fusion spliced as directed by SEPTA Project Manager. All splices shall be fusion; mechanical splices will not be accepted. F. All fiber optic cables, pigtails, splice enclosures, termination enclosure shall be identified with permanent and legible tags. The Contractor shall measure the station distances to determine the FO cable length. 2 SUBMITTALS A. Testing/ Quality Verification: The Contractor shall provide all product data evidence of testing/ quality verification, listing, and labeling either by printed mark on the data or by a separate listing card. B. Product Data and Catalog Cuts: The Contractor shall submit product data for all products provided. Indicate clearly the usage of each product. C. Installer Qualifications: Prior to installation, the Contractor shall submit data of installer's experience and qualifications for performing fiber work. D. Test Plan: The Contractor shall provide a complete and detailed test plan for the fiber cabling system including a complete list of test equipment, calibration certification dates, optical fiber components, cable routing plan and attachments and accessories. Include procedures for certification, validation, and testing. This test plan shall be submitted to the SEPTA Project Manager for approval. The Contractor shall not perform the site testing prior to receipt of formal approval. E. The Contractor shall submit Operation and Maintenance (O & M) Manuals which shall include detailed parts lists, lists of recommended spare parts, circuit diagrams, maintenance procedures, and operating instructions. F. Test Reports: The Contractor shall furnish factory reel tests of all optical fiber cables. Page 2 of 8 November 2015

3 QUALITY ASSURANCE A. The Contractor shall provide products that are listed and labeled by Underwriters Laboratory (UL), approved by Factory Mutual, or certified as meeting the standards of UL by the Electrical Testing Laboratory unless products meeting the requirements of these testing laboratories are not readily available or unless standards do not exist for the products. Provide products that are listed and labeled or approved as stated above for the location installed in, and listed and labeled or approved as indicated and specified for the applications the items are intended for. B. Manufacturer Qualifications: The Contractor shall provide data attesting to manufacturers experience with manufacturing all products indicated. C. The Contractor shall conform all work to NFPA 70, National Electrical Code. D. Contactor Qualifications: The Contractor shall provide description on the Contractor s previous experience in completing similar fiber optic work Install work under supervision of skilled licensed electricians. 4 REFERENCES A. American National Standards Institute (ANSI)/Telecommunications Industry Association (TIA)/Electronics Industry Alliance (EIA): 1. EIA-455-21A FOTP-21 Mating Durability of Fiber Optic Interconnecting Devices. 2. ANSI/TIA/EIA-526-7 OFSTP-7 Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant. 3. ANSI/TIA/EIA-526-14A OFSTP-14A Optical Power Loss Measurement of Installed Multimode Fiber Cable Plant. 4. ANSI/TIA/EIA-568-C.3 Optical Fiber Cabling Components Standard. 5. ANSI/TIA/EIA-606 Administration Standard for the Telecommunications Infrastructure of Commercial Buildings. B. Insulated Cable Engineers Association (ICEA): 1. ANSI/ICEA S-80-576 Communication Wire and Cable for Wiring of Premises. 2. ANSI/ICEA S-83-596 Fiber Optic Premises Distribution Cable. 3. ANSI/ICEA S-104-696 Optical Fiber Indoor/Outdoor Cable. C. National Electrical Manufacturers Association (NEMA): 1. NEMA WC 63.1 Telecommunications Cables Page 3 of 8 November 2015

D. Underwriters Laboratories (UL): 1. UL 467 Grounding and Bonding Equipment. 2. UL 1863 UL Standard for Safety for Communications-Circuit Accessories. E. National Fire Protection Association (NFPA): 1. NFPA 70 National Electrical Code (NEC). 2. NFPA 130 Standard for Fixed Guideway Transit and Passenger Rail Systems. 3. NFPA 502 Standard for Road Tunnels, Bridges, and Limited Access Highways. FIBER OPTIC CABLE SYSTEM PRODUCTS A. All fiber optic system products to be provided under this Contract: 1. Shall be new 2. Are subject to SEPTA Project Manager s review and approval 3. Shall be furnished and installed with all specified and additional components necessary under this Contract to constitute a functional and complete FOCS system 4. Shall be size termination panels to accommodate fiber terminations as per SEPTA Project Manager s direction with a minimum of 6 spare terminations and or up to 10% spare capacity 5. Acceptable manufactures are: a. AFL b. Corning Systems 6. Equipment Racks shall be: a. Standard 19 (480 mm) equipment rack, b. floor mounted modular type, c. 16 gauge steel construction treated to resist corrosion, consisting of (2) vertical uprights, (2) floor angles, (2) top angles, and assembly hardware. 7. Equipped with vertical and horizontal cable management channels, top and bottom cable troughs and full-height copper bus bar. 5 FIBER OPTIC PRODUCT SPECIFICATIONS A. Fiber Optic Cable Specifications 1. The Fiber Optic Cable shall be, Arctic Low temperature, Gel-Fill, Double jacket, 144 fiber, SM, (OD 0.776 in) ADSS Loose Tube Cable, complaint to IEEE1202. 2. The cable shall have a dual layer jacketing system, consisting of outer FR-LSZH chemicalresistant jacket, buffer tube, inner FR-LSZH jacket, water blocking layer and anti-buckling element, optical fibers, rip cord and cut-resistant matrix. 3. All of the FO cables shall meet all of the following Cable Specifications: a. OFNG-LS Listed, CSA-FT4, IEEE1202 and UL 1685 Page 4 of 8 November 2015

b. ICEA S-104-696, CSA 22.2 No. 230 and 232 c. Fluid immersion testing per ASTM D412 d. Sunlight Resistant Jacket e. Oil Res II compliant Jacketing System f. Zero Halogen Per MIL PRF 85045 g. Temperature Range- Operating:-55ºC to +70ºC,Storage: -60ºC to +70ºC h. Installation: -30ºC to +50ºC. 4. The FO cable for use in the Transit Tunnel shall meet all of the above and be LSZH and meet the requirements of NFPA 130 and NFPA 502 for use in Fixed-Guideway Transit Systems and Road Tunnels. 5. The Transit Tunnel Fiber Optic Cable shall be AFL LA Series, Part number LA1449CC111N1, Arctic low temperature. No approved equal is permitted. 6. The Aerial Fiber Optic Cable shall be AFL Mini-Span 693 EA Series, Part number AE1449CC20EA0, AE0489CC20EA0, AE0249CC20EA0 or approved equal. B. Fiber Optic Splice Enclosure 1. Enclosures to be used inside the shelters shall be wall mounted with hinged and gasketed door, NEMA 3, aluminum or steel construction, electrostatically applied, powder coat, lockable and modular. 2. Splices shall be fusion type. 3. Splice trays shall handle up to 576 single fusions per enclosure. 4. The wall mounted splice housing shall be AFL Light Link Optical Entrance, Model OEE- 288/576 or OEE 720/1440 or approved equal. 5. Enclosures shall provide storage and protection of fiber splices in individually accessible trays. a. Splice housing shall be equipped with cable strain-relief hardware, routing guides, record label on inside of front door, multiple grommet cable entry ports, work shelf, sealing and retention hardware as required. b. Each splice housing shall be equipped with the quantity of splice trays required to splice the quantity of fibers. C. Fiber Optic Patch Panels 1. Fiber Optic Patch Panel ST UPC Termination panel shall be constructed of 0.09 inch (2.2 mm) minimum aluminum and shall be compatible with an EIA 19 inches (480 mm) equipment rack. 2. Each panel shall be equipped fully loaded ultra-polished ST style single-mode adapters with a pre-installed connectorized pigtail of sufficient length to be fusion spliced in a wall mounted splice enclosure as directed by SEPTA Project Manager. The adapters shall be constructed with a zirconia ceramic alignment insert and a metal housing. The adapters shall provide a maximum attenuation of 0.3 db @ 1300 nm with less than a 0.2 db change after 500 mating cycles. Adapters shall comply with EIA-455-21A. Provide dust cover for all unused adapters. Panels shall have each adapter factory numbered and be equipped with laminated plastic nameplates Page 5 of 8 November 2015

above each adapter. 3. The rear of each panel shall have a cable management tray a minimum of 8 inches (203 mm) deep with removable cover, incoming cable strain-relief and routing guides and shall accommodate top, bottom or side cable entry. Patch panels shall be AFL Light Link LAN System series high density. 4. The Patch Panels shall be mounted in a standard 19 rack as directed by SEPTA Project Manager. If no suitable rack exists at the time of construction, the Contractor shall provide and install the rack. Racks shall be fastened to the shelter floor in a manner directed by SEPTA Project Manager. D. Trunnion and Dead-end Mounts 1. To complete the bracket number the Contractor shall determine the specific size of the H beam and it s orientation to the cable/ tracks. 2. When only one FO cable is required to be mounted, the Contractor shall use the double mount to provide for future expansion. 3. Trunnion mounts shall be specific to the cable size being used. 4. The dead end mount shall be specific to the cable size being used. EXECUTION A. Installation 1. The Contractor shall be responsible for providing the final design of the fiber optic cable system routing through the tunnels and to all other locations as specified within the Contract Documents. 2. Upon commencing the project, the Contractor shall thoroughly inspect the site and record exact distances for each cable segment. 3. The Contractor shall prepare a Shop Drawing showing the actual locations of all relevant structures; the actual distances between shelters; the actual cable distances; the details of mounting the cables in the tunnel; the details of areal installation; and the details of installing the patch and splice panels. 4. The Contractor shall submit the Shop Drawings to SEPTA for review. 5. No materials purchasing or installation work shall be initiated prior to receiving SEPTA Project Manager s approval of the Shop Drawings. The Shop Drawings shall reflect actual distances. 6. The Contractor shall not allow installation or mounting hardware to interfere, obstruct or cause damage to any of SEPTA s trains or vehicles. All installation hardware and cables shall confine to the distance from the tunnel wall as approved by the SEPTA Project Manager. In the aeriel application the cables shall be installed on the side of the H posts away from the tracks. 7. The Contractor shall be responsible to submit to the SEPTA Project Manager for approval the final fiber optic cable routing and installation design showing terminations locations, equipment installation locations, hanger methods and all other work to be installed under this project. Page 6 of 8 November 2015

8. In addition, the Contractor shall provide for the SEPTA Project Manager all construction installation details for approval prior to commencing with the work 9. The Contractor shall install all fiber optic cabling and equipment in accordance with the manufacturers written instructions. B. Test Procedures 1. The Contractor shall perform a comprehensive series of continuity and optical loss tests for each fiber and segment to ensure conformance with Contract and manufacturer s specifications as well as the operational requirements. 2. Contractor shall test all strands with fiber optic light meters recording all fiber loss measurements. Contractor shall provide Optical Time Domain (OTDR) trace measurements of each fiber strand between termination points. 3. All testing shall be recorded and turned over to SEPTA Project Manager for review and approval. Test results shall provide in both a software file and 8.5 x11 printed paper copy. The Contractor shall provide all required software need to view and manipulate the trace files and test results. 4. Acceptance Testing for Optical Fiber Cabling: a. The Contractor shall perform tests in accordance with ANSI/TIA/EIA-526-7 for single mode optical fiber. b. The tests shall be scheduled as indicated in the following table: Test Wave Length Equipment Needed End-to-end attenuation, both directions 1310 and 1550 nm Power meter, light source Connector loss 1310 or 1550 nm OTDR Splice loss 1310 or 1550 nm OTDR and fusion splicer reading OTDR Trace 1310 or 1550 nm OTDR Table 1: FO Cable Test Requirements C. Documentation 1. Testing shall be performed to verify compliance with the requirements of this Section and shall be performed in accordance with the approved testing plan. Correct any malfunctions as they occur, said malfunctions shall include, but not be limited to, equipment failure or failure of the fiber optic system to comply with the requirements of this Section. After corrections have been made, the test shall restart and shall continue until the results are satisfactory to the SEPTA Project Manager. Page 7 of 8 November 2015

2. Prior to cable installation, an acceptance test must be performed on all cable reels and all fibers using an OTDR to verify fiber integrity and quality. a. In the event the reel acceptance tests are not acceptable it is the Contractors responsibility to contact the cable manufacturer for a suitable resolution. b. All proposed resolutions shall be approved by SEPTA Project Manager. 3. All fibers shall be tested for insertion loss, end-to-end at 1310nm and 1550nm and the results recorded electronically. 4. Tests shall be conducted in both directions; fiber length, signature of test technician, and test date shall be recorded. The Contractor shall provide any required viewer software with the test readings. 5. The Contractor shall conduct the final inspection after the SEPTA Project Manager approves the the Contractor s proposal describing the test procedures, test result forms, and timetable for component testing. 6. Test Criteria. Total measured signal loss by field measurement shall not exceed the Max. Link Attenuation as described below. 7. Max. Link Attenuation shall be as calculated below: a. Link Attenuation = Cable Attn + Connector Attn + Splice Attn. b. Cable Attn (db) = Attenuation coefficient (db/km) x Length (Km) c. Attenuation Coefficient i. 0.35 db/km @ 1310 nm for loose tube single-mode outside plant cable ii. 0.25 db/km @ 1550 nm for loose tube single-mode outside plant cable iii. 0.70 db/km @ 1310 nm for tight buffered single-mode inside plant cable iv. 0.70 db/km @ 1550 nm for tight buffered single-mode inside plant cable(e.g. 0.35 db/km x 10km = 3.5dB) d. Connector Attn (db) = number of connector pairs times maximum connector loss in db (e.g. 2 connector pairs x 0.20 db = 0.4 db loss) e. Splice Attn (db) = number of splices times maximum splice loss in (db) (e.g. 4 splices x 0.1 db = 0.4 db loss) f. A max. Link Attenuation calculation shall be prepared for each unique FO path as described in the Contract Documents. 8. The measured Link Attenuation shall not exceed the calculate Max. Link Attenuation. a. If any link is found to equal to or greater than the Max. Link Attenuation, the Contractor shall, at no additional cost, make any needed corrections. b. These needed corrections may include replacement of any non-conforming cables. 9. Single-mode backbone links shall be tested at 1310 nm and 1550 nm in accordance with ANSI/TIA/EIA-526-7, Method A.1, and One Reference Jumper method. END SECTION Page 8 of 8 November 2015