PLANAR GRAPHS. Plane graph (or embedded graph) A graph that is drawn on the plane without edge crossing, is called a Plane graph

Similar documents
Luby s Alg. for Maximal Independent Sets using Pairwise Independence

1 Example 1: Axis-aligned rectangles

Generalizing the degree sequence problem

The Greedy Method. Introduction. 0/1 Knapsack Problem

We are now ready to answer the question: What are the possible cardinalities for finite fields?

Recurrence. 1 Definitions and main statements

Extending Probabilistic Dynamic Epistemic Logic

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

This circuit than can be reduced to a planar circuit

Ring structure of splines on triangulations

BERNSTEIN POLYNOMIALS

What is Candidate Sampling

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

Embedding lattices in the Kleene degrees

Support Vector Machines

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

The OC Curve of Attribute Acceptance Plans

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

Rotation Kinematics, Moment of Inertia, and Torque

On Lockett pairs and Lockett conjecture for π-soluble Fitting classes

Introduction to Graph Theory

8 Algorithm for Binary Searching in Trees

1. Measuring association using correlation and regression

Finite Math Chapter 10: Study Guide and Solution to Problems

Implementation of Deutsch's Algorithm Using Mathcad

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

DEFINING %COMPLETE IN MICROSOFT PROJECT

REGULAR MULTILINEAR OPERATORS ON C(K) SPACES

General Auction Mechanism for Search Advertising

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Calculation of Sampling Weights

Section 5.4 Annuities, Present Value, and Amortization

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.

Fast degree elevation and knot insertion for B-spline curves

Level Annuities with Payments Less Frequent than Each Interest Period

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

Practical Issues and Algorithms for Analyzing Terrorist Networks 1

STANDING WAVE TUBE TECHNIQUES FOR MEASURING THE NORMAL INCIDENCE ABSORPTION COEFFICIENT: COMPARISON OF DIFFERENT EXPERIMENTAL SETUPS.

Lecture 3: Force of Interest, Real Interest Rate, Annuity

The descriptive complexity of the family of Banach spaces with the π-property

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

Period and Deadline Selection for Schedulability in Real-Time Systems

Simple Interest Loans (Section 5.1) :

INTERPRETING TRUE ARITHMETIC IN THE LOCAL STRUCTURE OF THE ENUMERATION DEGREES.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST)

Faraday's Law of Induction

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

PERRON FROBENIUS THEOREM

To Fill or not to Fill: The Gas Station Problem

HÜCKEL MOLECULAR ORBITAL THEORY

HALL EFFECT SENSORS AND COMMUTATION

Minimal Coding Network With Combinatorial Structure For Instantaneous Recovery From Edge Failures

Traffic State Estimation in the Traffic Management Center of Berlin

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Lecture 2: Single Layer Perceptrons Kevin Swingler

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

Section C2: BJT Structure and Operational Modes

arxiv: v2 [math.qa] 30 Aug 2011

Mean Value Coordinates for Closed Triangular Meshes

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

How To Solve A Problem In A Powerline (Powerline) With A Powerbook (Powerbook)

= (2) T a,2 a,2. T a,3 a,3. T a,1 a,1

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Using Series to Analyze Financial Situations: Present Value

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

21 Vectors: The Cross Product & Torque

Nordea G10 Alpha Carry Index

SIMPLE LINEAR CORRELATION

A machine vision approach for detecting and inspecting circular parts

How To Assemble The Tangent Spaces Of A Manfold Nto A Coherent Whole

Multiple stage amplifiers

7.5. Present Value of an Annuity. Investigate

Availability-Based Path Selection and Network Vulnerability Assessment

J. Parallel Distrib. Comput.

VoIP over Multiple IEEE Wireless LANs

AUG 10 Rev L

Real-Time Process Scheduling

Sum of Degrees of Vertices Theorem

Loop Parallelization

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Joint Scheduling of Processing and Shuffle Phases in MapReduce Systems

LECTURE 1: MOTIVATION

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Efficient mining of group patterns from user movement data

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Introduction to Statistical Physics (2SP)

Computational Fluid Dynamics II

University of Crete Computer Science Department QUERY ORDERING BASED TOP-K ALGORITHMS FOR QUALITATIVELY SPECIFIED PREFERENCES IOANNIS KAPANTAIDAKIS

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

Transcription:

PLANAR GRAPHS Basc defntons Isomorphc graphs Two graphs G(V,E) and G2(V2,E2) are somorphc f there s a one-to-one correspondence F of ther vertces such that the followng holds: - u,v V, uv E, => F(u)F(v) E2 - x,y V, xy E => F(x)F(y) E2 Plane graph (or embedded graph) A graph that s drawn on the plane wthout edge crossng, s called a Plane graph Planar graph A graph s called Planar, f t s somorphc wth a Plane graph Phases A planar representaton of a graph dvdes the plane n to a number of connected regons, called faces, each bounded by edges of the graph. For every graph G, we denote n(g) the number of vertces, e(g) the number of edges, f(g) the number of faces. Degree We defne the degree of a face d(f), to be the number of edges boundng the face f. s The followng graphs are somorphc to 4 (the complete graph wth 4 vertces) f f2 G2 G f3 f4 f' f3' f2' f4' G3 Fgure : 3 somorphc graphs G2 and G3 are plane graphs, G s not. G s planar, as t s somorphc to G2 and G3. G2 and G3 are called planar embeddngs of K4

f, f2 and f3 (exteror phase) are phases of G2, wth degree d(f)=d(f2)=d(f3)=3. Theorem A graph s embeddable n the sphere f and only f t s embeddable n the plane. Proof. We show ths by usng a mappng known as stereographc projecton. Consder a sphercal surface S touchng a plane P at the pont SP (called south pole). The pont NP (called the pont of projecton or north pole) s on S and dametrcally opposte SP. Any pont z on P can be projected unquely onto S at z' by makng NP, z and z' collnear. In ths way any graph embedded n P can be projected onto S. Conversely, we can project any graph embedded n s onto P, choosng NP so as not to le an any vertex or edge of the graph. fgure 2: graph embeddable n sphere Theorem 2 A planar embeddng G' of a graph G can be transformed n to another embeddng such that any specfed face becomes the exteror face. Proof. Any face of G' s defned by the path whch forms ts boundary. Any such path, T, dentfed n a partcular planar representaton P of G, may be made to defne the exteror face of a dfferent planar representaton P' as follows. We form a sphercal embeddng P'' of P. P' s then formed by projectng P'' onto the plane n such a way that the pont of projecton les n the face defned by the mage of T on the sphere. a ) a b f c b c f f2 f3 f3 a f2 f3 f e d e d e d f2 b c fgure 3

Theorem 3 (Euler's formula) If G s a connected planar graph, for any embeddng G' the followng formula holds: n(g)+f(g) = e(g)+2 Proof. By nducton on f. For f(g) =, G s a tree. For every tree, e(g) = n(g)-, so n(g)+= e(g) + 2 n(g)+f(g) =e(g) +2 and the formula holds. Suppose t holds for all planar graphs wth less than f faces and suppose that G' has f 2 faces. Let (u,v) be an edge of G whch s not a cut-edge. Such an edge must exsts because G' has more than one face. The removal of (u.v) wll cause the two faces separated by (u,v) to combne, formng a sngle face. Hence (G-(u,v))' s a planar embeddng of a connected graph wth one less face than G', hence: f(g - (u,v)) = f(g) - n(g - (u,v) = n(g) e(g = (u,v)) = e(g) - But by the nducton hypothess: n(g- (u,v)) + f(g - (u,v)) = e(g - (u,v)) + 2 and so, by substtuton: n(g) + f(g) = e(g) + 2 Hence, by nducton, Euler's formula holds for all connected planar graphs. Lemma For any embeddng G' of any smple connected planar graph G, d( f ) 2e( G) = Proof. Each edge contrbutes to each face t s a bound, so t contrbutes 2 to the total sum. So the e(g) edges contrbutes 2e(G) to the total sum. Lemma 2 For any smple connected planar graph G, wth e(g) 3, the followng holds: e(g) 3n(G) - 6 Proof. Each face of any embeddng G' of G s bounded by at least three edges, hence: d( f ) 3 f ( G) Form the above lemma, d( f ) 2e( G), hence: 2e(G) 3f(G) => f(g) 3 2 e(g) = From Euler's formula, n(g)+f(g) = e(g)+2, so n(g) + 3 2 e(g) e(g) + 2 3 e(g) n(g) - 2 e(g) 3n(G) - 6 Defntons Bpartte graph A bpartte graph s a graph wth no cycles of odd number of edges. In a bpartte graph, the set of vertces can be parttoned to two dsjont not empty subsets V and V2, so that every edge of V connects a vertex of V wth a vertex of V2. Complete bpartte graph A complete bpartte graph, denoted as Km,n s a bpartte graph where V has m vertces, V2 has n vertces and every vertex of each subset s connected wth all other vertces of the other subset. Km,n haw m+n vertces and m*n edges.

Corollary A smple connected planar bpartte graph, has each face wth even degree. Proof. Each face s a cycle and the graph s bpartte, so each face must has even number of vertces. Lemma 3 For any smple connected bpartte graph G, wth e(g) 3. the followng holds: e(g) 2n(G) - 4 Proof. G s bpartte, so each face of every embeddng G' has at least 4 edges, hence d( f ) 4 f ( G) For every smple connected planar graph, d( f ) 2e( G), hence: 2e(G) 4f(G) => f(g) 2 e(g) = From Euler's formula, n(g)+f(g) = e(g)+2, hence n(g) + 2 e(g) e(g) + 2 2 e(g) n(g) - 2 e(g) 2n(G) - 4 s a) K5 s not planar. K5 n(k5) = 5 5 e(k5) = = 0 2 3n(K5) - 6 = 5-6 = 9. fgure 4 e(k5) > 3n(K5) - 6, hence K5 s not planar. b) K3,3 s not planar. K3,3 n(k3,3) = 6 e(k3,3) = 3*3=9 2n(K3,3) - 4 = 2-4 = 8 e(k3,3) > 2n(K3,3) - 4, hence K3,3 s not planar. c) fgure 5 The formula e(g) 3n(G) - 6 does not holds for e(g) < 3. K has n(k)=, e(k)=0 and e(k) >3n(K) - 6 K2 has n(k2)=2, e(k2)= and e(k2) > 3n(K2) - 6 Defntons Genus For any non-negatve nteger g, we can construct a surface n whch t s possble to embed g non-ntersectng closed curves wthout separatng the surface nto two regons. If for the same surface (g+) closed curves always cause a separaton, then the surface s sad to have a genus equal to g. A graph that can be embedded n a surface of genus g, but not on a surface of genus (g-) s called a graph of genus g. Crossng number The Crossng number of a graph s the mnmum number of crossngs of edges for the graph drawn n the plane.

Thckness The thckness T (G) of a graph G s the mnmum number of planar sub-graphs of G whose unon s G. Corollary 2 The thckness T of a smple graph G satsfes e( G) T(G) 3n( G) 6 Proof. Each planar sub-graph wll contan at most 3n(G)- edges. s fgure 6: a sphere of genus 0 fgure 7: a sphere wth a handle fgure 8: a torus, are both genus. fgure 9: a sphere wth two handles fgure 0: a double torus, are both genus 2

fgure : a graph of genus. Fgure 2: K5 has crossng number. fgure 3: K9 s the unon of three planar graphs, hence T(K9) 3 Theorem 4 If G s a connected graph wth genus g, then: f(g) = e(g) n(g) + 2 2g Proof. By nducton on g. For g=0 the graph s planar and we have f(g) = e(g) n(g) + 2 2g from Euler s formula. We assume that the theorem s true for all graphs wth genus (g-) These graphs may be drawn on a sphercal surface wth (g-) handles and nclude all those graphs obtaned by deletng those edges passng over a sngle handle n any graph of genus g. We construct G wth genus g on a surface o genus g by addng a sngle edge to G, requrng an addtonal handle. Usng prme letters for G, we have by the nducton hypothess: F(G ) = e(g ) n(g ) + 2 2g But e(g)=e(g )+, g = g +, n-n(g ) + Also f(g) = f(g ) because the handle connects two dstnct faces n G makng A sngle face n G. Hence by substtuton: F(G) = e(g) n(g) + 2 2 g. And so by nducton the theorem s proved. Corollary 3 If G s a connected graph wth genus n(g) 4 then g 6 (e(g) 3n(G)) + Proof. From the above theorem we get: g= 2 (e(g) n(g) - f(g)) +

Every face of an embeddng of the graph s bound by at least three edges of whch separates two faces, therefore 3f(G) 2e(G), and so the result follows by substtuton. Defnton Homeomorphc graphs Two graphs are sad to be homeomorphc f one can be made somorphc to the other by the addton or the deleton of vertces of degree two, n the followng manner: By dvdng an edge nto two edges n seres by the nserton of a vertex of degree 2, or by reverse of ths process;. Fgure 4: homeomorphc graphs Theorem 5 (Kuratowsk) A graph s planar f and only f t has no sub-graph homeomorphc to K5 or to K3,3. Proof. The proof s out of the subject of ths course. For a proof you can look at Alan Gbbons book, Algorthmc graph theory, page 77. 6 6 6 2 7 0 2 5 2 7 0 5 8 9 8 9 8 9 3 4 3 4 fgure 5: graphs G, G2 and G3 Graph G s not planar, snce t has a sub-graph (G2) homeomorphc to G3, Whch s somorphc to K3,3 (The partton of G3 vertces s{,8,9} and {2,5,6}) Defntons Colorng A colorng of the vertces of a graph s a mappng of any vertex of the graph to a color such that any vertces connected wth an edge have dfferent colors. The mnmum number of colors requred for a graph colorng s called colorng number of the graph. Theorem 6 (Four Color theorem) A planar graph has colorng number 4 The proof was gven n 976 by Appel and Haken, usng computers and analyzng the problem to 936 dfferent cases.

Lemma 4 The four color theorem s equvalent to the followng lemma: The vertces of a planar graph can be parttoned n two sets, V,V2 such that G/V, G/V2 are both bpartte graphs. Proof. a) 4 Color Theorem => Lemma I can get mmedately the two bpartte graphs by choosng 2 of the four colors for one of the bpartte graphs. b) Lemma => 4 Color theorem I can get the two bpartte graphs and put 2 dfferent colors on each graph. Defnton Dual graph. Let G be a planar graph and a planar embeddng G A dual graph G* has a vertex for each face of G and an edge between two faces f and f2 f and only f f and f2 share an edge. Dual graph s not always a smple graph. fgure 6 We can see that the dual of the frst planar representaton of the graph, s not somorphc to the dual of the second representaton. The dual graph refers to of a planar representaton and not to the graph. Lemma 5 A graph s planar f and only f the dual graphs of t s planar embeddngs are planar For a proof you can look at Alan Gbbons book, Algorthmc graph theory, page 83. Corollary 4 Usng dual graphs, w can see that the four color theorem s equvalent to: We can color the faces of a graph such that two faces who share an edge have dfferent color, usng at most four colors. Planarty Testng A sophstcated algorthm gven by Hopcroft and Tarjan, tests planarty n O(n) tme. 3 Here we wll see a smple algorthm that test planarty O( n ) tme.

As a frst applcaton of the dvde and conquer prncple, we observe that: A graph s planar f and only f all ts connected components are planar A connected graph s planar f and only f all ts bconnected components are planar Thus, va prelmnary decomposton nto connected and bconnected components, we can restrct our attenton to the problem of testng the planarty of a bconnected graph. Defntons Pece Let G be a bconnected graph. Let C be a cycle n G. A pece s: a) an edge wth vertces on C b) a connected component after removng the edges of C Separatng cycle A cycle C of G s sad to be separatng f t has at least two peaces, and s called nonseparatng f t has one peace. Of course, f G = C, then C has no peces. In any bconnected graph there s a separatng cycle and from any non-separatng cycle, I can always get a separatng cycle. fgure 7: a bconnected graph G and a cycle C. fgure 8: the peces of G wth respect to C

Lemma 5 Let G be a bconnected graph and let C be a nonseparatng cycle of G wth pece P.\If P s not a path, then G has a separatng cycle C consstng of a subpath of C plus a path of P between two attachments. Proof. Let u and v be two attachments of P that are consecutve n the crcular orderng, and let g be a subpath of C between u and v that does not contan any attachment of C. Snce P s connected, there s a path p, between u and v. Let C be the cycle obtaned from C by replacng g wth p. We have that g s a pece of G wth respect to C. If P s not a path, let e be an edge of P not n p. There s a peces of C dstnct from g contanng e. Thus, f P s not a path, then C has at least two peces and s thus a separatng cycle of G. fgure 9: a nonseparatng cycle C and a separatng cycle C obtaned from C as shown n the proof of the Lemma. Defnton The nterlacement graph If the graph G s planar, then n any planar drawng of G each peace s drawn ether nsde C or entrely outsde c. We say that two peces of G, wth respect to C, nterlace f they cannot be drawn on the same sde of C wthout volatng planarty. The nterlacement graph of the peces of G, wth respect to C, s the graph whose vertces are the peces of G and whose edges are the pars of peces that nterlace. fgure 20 A planar drawng of the above graph, where peces P, P3 and P6 are drawn nsde cycle C and the other peces are drawn outsde and the nterlacement graph I of the peces of F wth respect to cycle C

Theorem 7 A bconnected graph G wth a cycle C s planar f and only f the followng condtons hold: For each pece P of G wth respect to C, the graph obtaned by addng P to C s planar The nterlacement graph of the peces of G, wth respect to C, s bpartte. Algorthm The correctness of the algorthm s based on the above lemma and theorem and on the fact that the graph P obtaned by addng a pece P to C s bconnected. Input: a bconnected graph, G, wth n vertces and at most 3n-6 edges, and a separatng cycle C of G. Output: and ndcaton of whether G s planar.. Compute the peces of G wth respect to C. 2. for each pece P of G that s not a path (of one or more edges): (a) let P be the graph obtaned by addng P to C (b) let C be the cycle of P obtaned from C by replacng the porton of C between two consecutve attachments wth a path of P between them (c) apply the algorthm recursvely to graph P and cycle C. If P s non planar, return nonplanar 3. Compute the nterlacement graph I of the peces. 4. Test whether I s bpartte. If s not bpartte, return nonplanar 5. Return planar Tme analyss Step : O(n) Step 2: O(n)) 2 Step 3: O( n ) 2 Step 4: O( n ) 2 So a recursve nvocaton of algorthm of planarty testng takes O( n ) tme. We observe that number of recursve nvocatons as O(n) by assocatng wth each nvocaton a dstnct edge of G.. We conclude that the runnng tme of algorthm Planarty Testng s 3 O( n )??µ?t???????d?? 945 G?????? G?a????d?ßa?d?? 960