llllllllllllllillllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



Similar documents
United States Patent [191

\ \ \ connection connection connection interface interface interface

US Al (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2012/ A1 Lundstrom (43) Pub. Date: NOV.

(Us) (73) Assignee: Avaya Technology Corp. Je?' McElroy, Columbia, SC (US); (21) Appl. No.: 10/413,024. (22) Filed: Apr. 14, 2003 (57) ABSTRACT

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/ A1 Fukuzato (43) Pub. Date: Jun.

(12> Ulllted States Patent (10) Patent N0.: US 6,591,288 B1 Edwards et al. (45) Date of Patent: Jul. 8, 2003

software, and perform automatic dialing according to the /*~102

Ml CRO- MICRO PLEASE

US A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2002/ A1. Mannarsamy (43) Pub. Date: NOV.

(12) (10) Patent N0.: US 6,614,314 B2 d Haene et al. 45 Date 0f Patent: Se (54) NON-LINEAR PHASE DETECTOR FOREIGN PATENT DOCUMENTS

US Al (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/ A1 Sanvido (43) Pub. Date: Jun.

Hay (43) Pub. Date: Oct. 17, 2002

MAIN COMPUTER MONlTOR. INPUT/ OUTPUT ClRCUlT. 4,748,566 May 31, United States Patent [191. [11] Patent Number: [45] Date of Patent:

(51) Int Cl.: G06F 11/14 ( )

United States Patent [191 [11] Patent Number: 4,895,256

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/ A1. Operating System. 106 q f 108.

(12> Ulllted States Patent (16) Patent N6.= US 6,320,621 B1 Fu (45) Date of Patent: Nov. 20, 2001

US A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2013/ A1 DANG (43) Pub. Date: Jul.

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/ A1 Inoue et al. (43) Pub. Date: Jun.

(12) United States Patent (10) Patent N0.: US 7,068,424 B1 Jennings et al. (45) Date of Patent: Jun. 27, 2006

Telephone Dressing Systems - Advantages and Disadvantages

check is encoded for causing it to b; oplerable with a, predetermined metering device. In t e a ternative em

60 REDIRECTING THE PRINT PATH MANAGER 1

US A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2013/ A1 Pi0t (43) Pub. Date: May 30, 2013

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

(12) United States Patent Takada

(IP Connection) Miami (54) (76) (21) (22) (51) (52) Application

RAM & ROM Based Digital Design. ECE 152A Winter 2012

7714 Evaluation 7 logic

Means are provided for repetitively applying a low [52] U S Cl 128/2 1 B 324/51 current signal, having a distinctive waveform and fre

/ \33 40 \ / \\ \ \ M / f 1. (19) United States (12) Patent Application Publication Lawser et al. NETWORK \ 36. SERVlCE 'NTERNET SERVICE

POTENTIAL. SC DA Il'JA N INTERFACE m. (21) Appl. No.: 11/037,604

(12) United States Patent (10) Patent No.: US 8,253,226 B2 Oguri (45) Date of Patent: Aug. 28, 2012

(54) RAPID NOTIFICATION SYSTEM (52) US. Cl /206. (57) ABSTRACT (75) Inventors: Anand Rajasekar, San Jose, CA

Hearing Aids And Frequency Response Testing

(12) United States Patent Halonen

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/ A1 Owhadi et al. (43) Pub. Date: Feb.

A Practical Guide to Free Energy Devices

(12) United States Patent (16) Patent N6.= US 6,198,814 B1 Gill (45) Date of Patent: Mar. 6, 2001

(71) Applicant: SPEAKWRITE, LLC,Austin, TX (US)

: 2R5 ML OR 2. United States Patent [191. Fig-A3 [111 3,909,553. [451 Sept. 30, 1975 C54 ( T : Marshall. Laboratories Incorporated, Northlake, Ill.

Ulllted States Patent [19] [11] Patent Number: 6,055,990

Ulllted States Patent [19] [11] Patent Number: 6,141,545

(12) United States Patent Edelen

How To Make A Programmable Logic Network From A Program To A Program

(54) RETARGETING RELATED TECHNIQUES (52) US. Cl /1453 AND OFFERINGS. (75) Inventors: Ayrnan Farahat, San Francisco, (57) ABSTRACT

`UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD. MICRON TECHNOLOGY, INC. Petitioner

Lookup CNAM / other database for calllng

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/ A1 Ollis et al. HOME PROCESSOR /\ J\ NETWORK

Identification and tracking of persons using RFID-tagged items

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/ A1 Gutierrez (43) Pub. Date: Feb.

United States Patent [191 [11] 4,388,717 Burke [45] Jun. 14, 1983

US Al (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/ A1 Weng et al. (43) Pub. Date: Sep.

Memory Basics. SRAM/DRAM Basics

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 Wu et al. (43) Pub. Date: Feb. 20, 2003

Ulllted States Patent [19] [11] Patent Number: 5,943,406

Location-Aware and Safer Cards: Enhancing RFID Security and Privacy

Umted States Patent [19] [11] Patent Number: 4,854,653 Lakso [45] Date of Patent: Aug. 8, 1989

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/ A1 Du et al. (43) Pub. Date: Aug.

United States Patent [191 [11] Patent Number: 4,732,385

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ

USOO A United States Patent [191 [11] Patent Number: 5,408,501 Cornaby [45] Date of Patent: Apr. 18, 1995

Yaffs NAND Flash Failure Mitigation

US B1 (12) United States Patent. (10) Patent N0.: US 6,424,627 B1 Snrhaug et al. (45) Date of Patent: Jul. 23, 2002

DS2438EVKIT+ Smart Battery Monitor Evaluation Kit

llllllllllllllillllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

;111: ~~~~~~~~~~~~~~~~~~~ [73] Assigneez Rockwell Semiconductor Systems 5,754,639 5/1998 Flockhart et al...

(12) United States Patent (10) Patent N0.: US 8,282,471 B1 Korner (45) Date of Patent: Oct. 9, 2012

Patent Application Publication Sep. 30, 2004 Sheet 1 0f 2. Hierarchical Query. Contact Ow FIG. 1

i X USE HOST USB B R CONTROLLER 111a 40 11a 1 21

(54) LOTTERY METHOD Publication Classi?cation

With respect to the way of data access we can classify memories as:

US A United States Patent [19] [ill Patent Number: 5,847,562 Fulton et al. [45] Date of Patent: Dec. 8, Experimental data

Load testing circuit. Knott, Arnold. Publication date: Document Version Publisher's PDF, also known as Version of record. Link to publication

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/ A1 Nej ah (43) Pub. Date: Feb.

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/ A1 Warren (43) Pub. Date: Jan.

Filetto et al. [45] Date of Patent: Feb. 15, 2000

(12) United States Patent (10) Patent No.: US 8,349,484 B2 Do et a]. (45) Date of Patent: Jan. 8, 2013

(12) United States Patent (16) Patent N6.= US 6,611,861 B1 Schairer et al. (45) Date of Patent: Aug. 26, 2003

Decimal Number (base 10) Binary Number (base 2)

United States Patent [191 [11] Patent Number: 4,779,221 Magliocco et al. [45] Date of Patent: Oct. 18, 1988

US A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2007/ A1 Makowka (43) Pub. Date: Feb.

Emergency Spill Basis For Collecting And Collecting?

1 / 25. CS 137: File Systems. Persistent Solid-State Storage

(12) United States Patent (10) Patent N0.: US 8,176,126 B2 Da vi s et a]. 45 Date of Patent : Ma 8, 2012

The Programming Interface

(54) (76) (21) (22) (60) plurality of price panels for displaying currency pair prices, Leong Fai Mah, BridgeWater, NJ (US) (57) ABSTRACT

. tlllll,1! 1% 11:11 I.,W/ "-111 // out AIHI/ ) I \\ M10. 1 I! (1' 1L- 1!!! I VEHICLE} I] r20 (TRAFFIC COMPUTER 10 RECEIVING UNIT 41 I \ ")SENSOR

Radio sensor powered by a mini solar cell the EnOcean STM 110 now functions with even less light

US Al (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/ A1 Kuehl (43) Pub. Date: Aug.

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/ A1 Clegg (43) Pub. Date: Sep.

CHAPTER 11: Flip Flops

Chapter 5 :: Memory and Logic Arrays

3,213,816. Oct. 26, / V//////////A 22 "71% / ' ///////1 J. SOLANKA. Filed Feb. 25, Sheets-Sheet s 34 3o, o ATTORNEY

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/ A1 FAN et al. (43) Pub. Date: Feb.

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/ A1 Lee (43) Pub. Date: Mar.

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/ A1 Kelly et al. (43) Pub. Date: Feb.

A N. O N Output/Input-output connection

Transcription:

llllllllllllllillllllllllllllllllllllllllllllllllllllllllllllllllllllllllll USOO5535162A United States Patent [19] [11] Patent Number: 5,535,162 Uenoyama [45] Date of Patent: Jul. 9, 1996 [54] ELECTRICALLY ERASABLE READ ONLY 2016759 9/1979 United Kingdom. MEMORY 83-02847 8/1983 WIPO. [75] Inventor: Hiromi Uenoyama, Kyoto, Japan Primary Examiner_viet Q Nguyen [73] Assigneez Rohm Co. Ltd. Kyoto Japan Attorney, Agent, or Flrm Fish & Richardson [21] Appl. N0.: 361,871 [57] ABSTRACT [22] Filed; D c_ 22, 1994 In an electrically erasable programmable ROM in which written data contains in a very limited part high-frequency Related US. Application Data reload data, the memory capacity is reduced in the following new way. An address detecting circuit (12) detects whether [63] Continuation of Ser. No. 114,183, Sep. 1, 1993, abandoned. or not designated write addresses are within a predetermined [30]..... range and discriminates the write object data, which is to be Foreign Apphcamm Pnonty Data high-frequency reload data, if the designated write addresses Sep. 1, 1992 [JP] Japan..... 4-233437 are within the predetermined range as the result of detection [51] 6 Int. Cl...... G11C 16/00 Then, three sets of identical data (D7 to Do) prepared by a data creating Circuit (11) are overwritten respectively in [52] U_.s. c1...... 365/200; 365/189.01; 371/211 three di?terem memory cells (A0, A0; A0") In data reading, Fleld of Search..... the data are read from the respectivg memory 365/200; 371/10-1, 102, 10 3 cells, and one of the data decided by a majority logical [56] References Cited circuit (15) is outputted as read data. FOREIGN PATENT DOCUMENTS 2-192099 7/1990 Japan. 6 Claims, 6 Drawing Sheets WHITE 8 DATA, D1- Do it MAJORITY DATA CREAT. m- 00.43 LOGIC 8T> 3%}: D7 - D0 17 CRCT D7- D0 ) \ 13_2 CRCT 19 l ( ~20 316-2 RM RM RM 1 K15 ADDRESS ADDRESS 16 11 3 Alt?P Alt/IF AlVIP 3 3 - " 4w _ DATA T DETECT. 3 8 * 8 CRCT 0 A0 A0 A0" 18 S 1 2 12 3 C14 4

US. Patent Jul. 9, 1996 Sheet 2 0f 6 5,535,162 XV RV Ev NN V 26 5.5 CECE: BE; xi m?m kl?n 8.5 5% 062 Q @ 55 a s. 2 é *.2.._.< Q25: mm N P) m 2.9". N I31 $553 wmmmmg 22.2 5E AIM! E3.._.OmO =o< E 28i..2m%%

US. Patent Jul. 9, 1996 Sheet 5 of6 5,535,162 VTH A W DATA 0" 2V:...... _ o- g ; RELOAD - /> FREQUENCY DATA "1" -2V V00 N f m 52 53 OUTPUT

US. Patent Jul. 9, 1996 Sheet 6 of 6 5,535,162 ERROR RATE A INI IAL RAIEQIIII WEAR-OUT FAILURE FAILURE FAILURE RELOAD f FREQUENCY Fig. 7

1 ELECTRICALLY ERASABLE READ ONLY MEMORY This application is a?le wrapper continuation of US. application Ser. No. 08/114,183,?led Sep. 1, 1993, now abandoned. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a nonvolatile memory, and more particularly to an electrically erasable read only memory (EEPROM). 2. Description of the Related Art In various kinds of recent electronic equipments, EEPROMs are used as initialization memories. Occasion ally, in consumer market appliances such as televisions and cameras, data which needs to be frequently updated and initialization data which only occasionally reloaded after being once written are stored in a mixed fashion in a nonvolatile memory. For example, in a television, if the power supply is switched off, data of the last channel being viewed immediately before the switch 01f, i.e. 5,535,162 channel information such as a receiving frequency, volume and degree of screen brightness, is stored in the memory so that the television will start operating in the same conditions as before when it is switched on the next time. Since such data (hereinafter called last channel memory data ) is stored whenever the power supply is switched 011, the memory is reloaded repeatedly. On the contrary, initialization data for presetting to match a channel button with a frequency rarely needs to change after having been set up once, and the memory must be reloaded only several times at most. FIG. 7 shows a U-shaped curve representing the reloading characteristic of an EEPROM. Initial failure, which results from various causes in the manufacturing process, can be screened by conducting tests; but random failure and wear out failure would still be problems. In a random failure region, though its failure frequency is very approximately zero, a much better idea is needed to get it to be absolutely zero. In a wear-out region, since the frequency of reloading and failure frequency increase, measures would be required to increase the frequency of reloading as high as possible until it enters the wear-out region. One of the conventional measures employs a so-called ECC (error correction code) system. In the ECC system, when correcting a 1-bit error, for example, 4-bit parity data is needed for l-word-s-bit data. If this method is applied to every word address, the chip size would be large to increase the cost of production. Similarlly to a television receiver, in the case where last channel memory data which need to be reloaded frequently and preset memory data which rarely need to be reloaded are stored in the memory in a mixed fashion, wear-out failure as shown in FIG. 7 need scarcely be considered for the latter, i.e., preset memory data, but only for last channel memory data. However, according to this conventional method, since the ECC system is used to add parity bits to every word address of EEPROM even if the last channel memory data occupies only several bytes, it requires many more memory bits than necessary, which thereby increases the cost of production. SUMMARY OF THE INVENTION It is therefore an object of this invention to provide an electrically erasable read only memory which is inexpensive 20 25 35 45 50 65 2 and is highly reliable when used in storing, in a mixed fashion, data to be reloaded frequently and data to be rarely reloaded. According to a?rst aspect of the invention, there is provided an electrically erasable read only memory for storing, in a mixed form, data to be reloaded at high frequency and data to be reloaded at low frequency, com prising: data identifying means for identifying whether object data to be written is the high-frequency reload data or the low-frequency reload data; and data reloadable control means for writing in memory cells said object data by a predetermined highly reliable method if said object data is the high-frequency reload data as the result of identi?cation of said data identifying means and for writing in memory cells said object data by an ordinary method if said object data is the low~frequency reload data. In the?rst arrangement, discrimination is made as to whether the object data to be written is high-frequency reload data or low-frequency reload data, and writing is performed in conformity with the result of discrimination. According to a second aspect of the invention, there is provided an electrically erasable read only memory for storing, in a mixed form, data to be reloaded at high frequency and data to be reloaded at low frequency, com prising: write address detecting means for detecting whether or not designated write addresses are within a predetermined range; data writing means for discriminating said object data to be the high-frequency reload data only when said write addresses are within the predetermined range as the result of detection by said write address detecting means and then overwriting said object data in a plurality of memory cells; and read data deciding means for reading said data written in said plural memory cells by said data writing means when said predetermined range of addresses are designated during reading and for deciding one of the read data. In the second arrangement, detection is made of whether or not the designated write addresses are within a predeter mined range, and as a result, if they are within the prede termined range, the object data to be written is judged to be the high-frequency reload data and is overwritten ill plural memory cells. For reading, one of the read data is decided for output, based on the written data. According to a third aspect of the invention, there is provided an electrically erasable read only memory for storing, in a mixed form, data to be reloaded at high frequency and data to be reloaded at low frequency, com prising: write address detecting means for detecting whether or not designated write addresses are within a predetermined range; data writing means for discriminating that said object data is the high-frequency reload data only when said write addresses are within said predetermined range as the result of detection by said write address detecting means and writing in memory cells said object data with an error correction code added; and error correcting means for read ing said data, which is written by said data writing means, when said predetermined range of addresses are designated during reading and for making an error correction based on said error correction code. In the third arrangement, detection is made whether or not the designated write addresses are within a predetermined range, and as a result, if they are within the predetermined range, the object data to be written is judged to be the high-frequency data and is written in memory cells after an error correction code is added. For reading, error correction is made using the error correction code. According to a fourth aspect of the invention, there is provided an electrically erasable read only memory for

3 storing, in a mixed form, data to be reloaded at high frequency and data to be reloaded at low frequency, com prising: write address detecting means for detecting whether or not designated write addresses are within a predetermined range; data writing means for discriminating said object data to be the high-frequency reload data only when said write addresses are said predetermined range as the result of detection by said write address detecting means and for writing said object data and reverse data thereof respectively in different memory cells; and differential data creating means for reading both said object data and said reverse data, which are written by said data writing means, when said predetennined range of addresses are designated during reading and for creating read data according to the difference between said object data and said reverse data. In the fourth arrangement, detection is made of whether or not the designated write addresses are within a predeter mined range, and as a result, if they are within the prede termined range, the object data to be written is the high frequency reload data, and the object data to be written and its reverse data are written in the respective memory cells. For reading, the difference between the original data and the reverse data is outputted as read data. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an EEPROM accord ing to a?rst embodiment of this invention; FIG. 2 is a block diagram showing an EEPROM accord ing to a second embodiment of the invention; FIG. 3 is a block diagram showing an EEPROM accord ing to a third embodiment of the invention; FIG. 4 is a block diagram showing an EEPROM accord ing to a fourth embodiment of the invention; FIG. 5 is a characteristic graph showing the relationship between the memory transistor s threshold voltage and the frequency of rewriting to the EEPROM; FIG. 6 is a diagram illustrating the principle of reading data from the EEPROM; and FIG. 7 is a characteristic graph showing the relationship between the error rate and the frequency of reloading in a conventional EEPROM. DETAILED DESCRIPTION Embodiments of this invention will now be described in detail with reference to the accompanying drawings. FIG. 1 shows an EEPROM according to a?rst embodi ment of this invention. In the EEPROM, l word consists of 8 bits. As shown in FIG. 1, this circuit is equipped with a data creating circuit 11 connected to an address detecting circuit 12. When D7 -Do as 8-bit wide write data 17 are inputted to the data creating circuit 11, the address detecting circuit 12 checks address data 18 and outputs a detection signal 20 to the data creating circuit 11 if designated addresses are within a predetermined range. Upon receipt of the detection signal 20, the data creating circuit 11 writes the write data D7-Do into registers 16-1 16-3, respectively. The predetermined range of addresses are four addresses of 0" 3, in which high-frequency reload data is to be written. In other word addresses at which low-frequency reload data is to be written. The data of the registers 16-1-16-3 are written into memory cells of the corresponding word address of a memory 14 in parallel via read/write ampli?ers 13-1 13-3, respectively. In the illustrated example, the data is written 5,535,162 15 20 25 30 35 45 50 55 60 65 4. into three memory cells A0, A0, A0", respectively, of the word address 0. If the address detected by the address detecting circuit 12 is other than four addresses of 0-3, the data creating circuit 11 sets the data only in the register 16-1 and then writes it only into the memory cell A0 of the corresponding word address. For reading this data, data is read from the respective memory cells A0, A0, A0" of the address 0, for example, and is inputted to a majority logical circuit 15 via the read/write ampli?ers 13-1-13-3. The majority logical circuit 15 takes two or more pieces of data out of three pieces of data having been read and outputs them as read data 19. Thus, in this embodiment, data to be frequently reloaded is written trebly, while data to be scarcely reloaded is written singly. Regarding the threefold data, since reading is done by majority logic, occurrence of data error is reduced to a minimum to secure reliability. FIG. 2 shows an EEPROM according to a second embodi ment of the invention. In FIG. 2, parts or elements similar to those of the?rst embodiment (FIG. 1) are designated by the same reference numerals, and repetition of their description is omitted. In this embodiment, if the write address detected by the address detecting circuit 12 is any of O 3, the write data D7~D0 are written in di? erent word addresses of a memory 20 via a read/write ampli?er 22 trebly and serially. For reading, when the address detecting circuit 12 has detected the read address of the high-frequency reload data, a timing signal is outputted from a timing generating circuit 21 to control the switching operation of a switch 23. Thereby data is read from the respective memory cells A0, A0, A0" corresponding to the three different word addresses and is stored, as data D7-Do, D7'-Do', D7"-Do", in a register 24 via the switch 23. These values of the register 24 are read to the majority logical circuit 15 where read data are decided and outputted as the read data 19. On the other hand, if the written address is other than 0 to the data is written into a single word address. Thus, in this embodiment, since data to be frequently reloaded is written trebly and is read by majority logic, data errors are reduced to secure reliability. FIG. 3 shows an EEPROM according to a third embodi~ ment of the invention. The circuit of this embodiment, as shown in FIG. 3, is equipped with a parity bit adding circuit 31 for adding 4-bit parity data to 8-bit data and writing them into a memory 34 via a read/write ampli?er 33. For example, if the address is 0, the data is written into the memory cell A0 and the memory cell P0. For reading, 8-bit data and 4-bit parity data, 12 bits in total, are read to an ECC circuit 32 where error correction is carried and the corrected data is output as 8-bit read data 19. ' If the detected write address is other than 0 3, only data D7-D0 are written with no parity bit added. Thus, in this embodiment, since error correction is done by adding parity bits only to high~frequency reload data, data errors can be minimized to secure reliability. FIG. 4 shows an EEPROM according to a fourth embodi ment of the invention. The circuit of this embodiment is equipped with a reverse data creating circuit 41 for creating data D, which is reverse to the value of the write data, if the address detecting circuit 12 detects a high-frequency reload data address from the address data 18. Upon receipt of a detection signal from the address detecting circuit 12, a timing generating circuit 21 outputs a predetermined timing signal. As switches 44, 45 are actuated at the timing of this timing signal, data D and D are written into the respective

5 memory cells A0, A0 of a memory 46 via the switch 44, a write ampli?er 43 and the switch 45. These two pieces of data are inputted to a differential read ampli?er 47 when reading, and the differential output is outputted as read data 19. The operation of this embodiment will now be described in detail. Generally, in an EEPROM, as shown in FIG. 5, 2 V, for example, is taken as the transistor s threshold voltage VTH in correspondence with the write data 0, and +7 V is taken as VTH in correspondence with the data 1. For reading, as shown in FIG. 6, 2 V is applied as the read voltage to the base of a transistor 51. For example, if the threshold voltage VTH of the transistor 51 is set to +7, the transistor 51 will not be in the ON state so that the potential at a point (a) will be H level. As a result, L level is outputted as reverse output by an inverter 53. If the threshold voltage VTH of the transistor 51 is set to 2 V, the transistor 51 will be in the ON state, a voltage drop is caused due to a current?owing in a resistive load 52 so that the potential of the point (a) will be L level. As a result, the output voltage will be H by the inverter 53. In short, when the threshold voltage VTH of the transistor 51 is set to +7 or 2 V, 0 or 1 will be respectively outputted as read data. However, as shown in FIG. 5, since the higher the frequency of reloading, the closer the respective threshold voltage VTH will become to 0 V, and a read error will de?nitely occur at a point X after the threshold voltage VTH has become 2 V. But as shown in FIG. 4, the difference between data D and its reverse data D, which are both previously written, is taken when reading; therefore, as shown in FIG. 5, even when the frequency of reloading is X or more, either 7 V level or 2 V level is not inverted so that correct data will be outputted from the diiferential read ampli?er 47, thus extending the life of the memory. If the detected write address is other than 0 3, only the data D is written while the reverse data D' is not written. In the foregoing embodiments, the memory is of the type in which 1 word is 8 bits. Alternatively, l word may be 16 bits or more bits. Further, in the foregoing embodiments, four addresses O 3 of the memory addresses are set to those for writing data to be reloaded at high frequency. However, this inven tion should by no means be limited to this illustrated example; such a speci?ed address region may be varied according to need. As mentioned above, according to this invention, in storing high frequency reload data and low-frequency reload data in a mixed fashion in the electrically erasable 5,535,162 35 45 6 read only memory, since writing is done in a manner depending upon the frequency of reloading of the data, it is not necessary to do write/read processes with reliability more than necessary for the low-frequency reload data on account of the existence of high-frequency reload data in very limited parts, thus saving the memory capacity. What is claimed is: 1. An electrically erasable read only memory for storing a?rst type of data and a second type of data together, said?rst type of data being rewritten with high frequency and said second type of data being rewritten with low frequency, said memory comprising: (a) write address detecting means for detecting whether data to be written is of said?rst type by determining whether designated write addresses are within a pre determined range; (b) data writing means for adding an error correction code to said data and for writing said data to at least three memory cells when said data is determined to be of said?rst type, and for writing said data to a single memory cell when said data is determined to be of said second type; andv (0) error correction means for reading said data written in said at least three memory cells when said predeter mined range of addresses are designated during data reading, for selecting one of the read data, and for performing error correction based on said error correc tion code. 2. An electrically erasable read only memory according to claim 1, wherein said data writing means writes the data in said at least three memory cells in parallel. 3. An electrically erasable read only memory according to claim 2, wherein said data writing means has a plurality of registers for storing the same data and writes the data, which are written in said registers, in said at last three memory cells in parallel. 4. An electrically erasable read only memory according to claim 1, wherein said data writing means writes the data in said at least three memory cells serially. 5. An electrically erasable read only memory according to claim 3, wherein said error correcting means has a plurality of registers and reads the data from said at least three memory cells to said registers serially. 6. An electrically erasable read only memory according to claim 1, wherein said error correcting means selects one of the read data by majority, based on the data read from said at least three memory cells. * * * * *