MOLDA for Protein Modeling: A Molecular Modeling Program for Biological Molecules

Similar documents
Molecular Visualization. Introduction

Structure Tools and Visualization

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

BIOC351: Proteins. PyMOL Laboratory #1. Installing and Using

Section I Using Jmol as a Computer Visualization Tool

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

Built from 20 kinds of amino acids

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

MS WORD 2007 (PC) Macros and Track Changes Please note the latest Macintosh version of MS Word does not have Macros.

Replication Study Guide

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

3D structure visualization and high quality imaging. Chimera

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

The Ramachandran Map of More Than. 6,500 Perfect Polypeptide Chains

Visualizing molecular simulations

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

PyRy3D: a software tool for modeling of large macromolecular complexes MODELING OF STRUCTURES FOR LARGE MACROMOLECULAR COMPLEXES

Description for structure of substances by computer 3D animation in chemical education

CSC 2427: Algorithms for Molecular Biology Spring Lecture 16 March 10

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

file:///c /Documents%20and%20Settings/terry/Desktop/DOCK%20website/terry/Old%20Versions/dock4.0_faq.txt

Summary. Load and Open GaussView to start example

Translation Study Guide

Structure of proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

Myoglobin and Hemoglobin

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Shu-Ping Lin, Ph.D.

2(H 2 O 2 ) catalase 2H 2 O + O 2

Lecture 19: Proteins, Primary Struture

Helices From Readily in Biological Structures

Vector NTI Advance 11 Quick Start Guide

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?

Molecular Dynamics Simulations

Concluding lesson. Student manual. What kind of protein are you? (Basic)

Introduction to Proteins and Enzymes

Combinatorial Biochemistry and Phage Display

Bob Jesberg. Boston, MA April 3, 2014

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS

The peptide bond is rigid and planar

Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins

Intermediate PowerPoint

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison

RNA Movies 2: sequential animation of RNA secondary structures

Refinement of a pdb-structure and Convert

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Task Scheduler. Morgan N. Sandquist Developer: Gary Meyer Reviewer: Lauri Watts

DATASTREAM CHARTING ADVANCED FEATURES

Molecular Graphics What?

Protein Preparation Guide

Paper: 6 Chemistry University I Chemistry: Models Page: 2 of Which of the following weak acids would make the best buffer at ph = 5.0?

PRACTICE TEST QUESTIONS

SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE

Structures of Proteins. Primary structure - amino acid sequence

Introduction to Bioinformatics AS Laboratory Assignment 6

Structure Determination

VMD - High Resolution Graphics

Microsoft PowerPoint 2010

Ms. Campbell Protein Synthesis Practice Questions Regents L.E.

Computational Systems Biology. Lecture 2: Enzymes

Peptide Bonds: Structure

Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE. Section 1. Primary structure, secondary motifs,

Amino Acids and Proteins

D2L: An introduction to CONTENT University of Wisconsin-Parkside

DNA Worksheet BIOL 1107L DNA

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins

Maestro 8.0. User Manual. Schrödinger Press

Protein Studies Using CAChe

Beckman Coulter DTX 880 Multimode Detector Bergen County Technical Schools Stem Cell Lab

SBGNViz.js 1.1 User s Guide

INTRODUCTION TO PROTEIN STRUCTURE

LESSON 5. Learning to Use Cn3D: A Bioinformatics Tool. Introduction. Learning Objectives. Key Concepts

Advanced Visualization for Chemistry

CLC Bioinformatics Database

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Name: Date: Period: DNA Unit: DNA Webquest

Microsoft PowerPoint 2011

The Application Getting Started Screen is display when the Recruiting Matrix 2008 Application is Started.

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS

Oxygen-Binding Proteins

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Lectures 2 & 3. If the base pair is imbedded in a helix, then there are several more angular attributes of the base pair that we must consider:

Proteins the primary biological macromolecules of living organisms

K'NEX DNA Models. Developed by Dr. Gary Benson Department of Biomathematical Sciences Mount Sinai School of Medicine

Smoke Density Monitor application documentation

Visualization Plugin for ParaView

Microsoft Excel 2013 Tutorial

Bitrix Site Manager 4.1. User Guide

Cellular Respiration: Practice Questions #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Windows XP Home Edition / Windows XP Professional

Sequence Formats and Sequence Database Searches. Gloria Rendon SC11 Education June, 2011

E-Loader Operation Manual

Transcription:

J. Comput. Chem. Jpn., Vol. 2, No. 4, pp. 143 148 (2003) MOLDA for Protein Modeling: A Molecular Modeling Program for Biological Molecules Hiroshi YOSHIDA Center for Quantum Life Sciences and Department of Chemistry, Graduate School of Science Hiroshima University, Kagamiyama 1-chome, Higashi-Hiroshima 739-8526, Japan e-mail: yoshida@molda.org (Received: July 22, 2003; Accepted for publication: August 28, 2003; Published on Web: November 27, 2003) A molecular modeling program for biological molecules has been developed as a 3D data-interaction tool for computational chemistry and structural bioinformatics. This program named MOLDA for Protein Modeling is written in the Java language and works multiplatform environment. MOLDA for Protein Modeling has been implemented with various functions useful for studying biological molecules by structural bioinformatics. The functions are as follows: (1) the importing function of the PDB file is implemented, (2) 3D structure of polypeptides can be generated by inputting the sequences, (3) the conformation of the polypeptide can be changed by reading the dihedral angle matrix, and (4) an amino acid residue can be changed by the point mutation operation. MOLDA for Protein Modeling is expected to be a useful tool for drug design. Keywords: Molecular modeling, Protein modeling, Protein Data Bank, Point mutation, Bioinformatics 1 Introduction Quantum theory has brought many breakthroughs in the sciences since the beginning of the 20th century. It has been a driving force for elucidating laws of the molecular world from a theoretical viewpoint. As computers were developed, quantum theory became an important tool for predicting various properties of materials. Along with the development of software for molecular dynamics and molecular orbital calculations in the 1970 s, software that allows creation of data for use in calculation and visualization programs has also become important for developing new scientific technologies. MOLDA, developed at the beginning of the 1980 s, is the world s first computational chemistry oriented molecular modeling program for PC s [1 3]. Since MOLDA s first release, many molecular modeling applications have been developed, but most of these aim at promoting affiliated computational chemistry programs. In contrast, MOLDA has worked for 20 years to create an interface for computational chemistry programs (freeware programs in particular). It has always changed with the times, and has avoided concentrating on any particular methods in favor of flexibility. We have always striven to keep abreast of computational chemistry trends and methods, including molecular mechanics calculations, semi-empirical molecular orbital calculations, ab initio molecular orbital calculations, and density functional theory. In 1998, MOLDA for Java, a multi-platform molecular modeling program which operates on various platforms without recompiling, was released [4, 5]. MOLDA is now widely used as a Hub Program in the field of computational chemistry as a platform-independent graphical user interface. In the meantime, the new field of bioinformatics has been expanding rapidly along with recent developments in genomics, making the computer a much more important tool in biology than previously. The mysteries of the life sciences are now being revealed using new computer techniques for information processing. In the present work, MOLDA for Protein Modeling is introduced as a molecular modeling program for computer chemistry and structural bioinformatics. 2 Program Overview MOLDA for Protein Modeling (hereafter MOLDA ) is written in Java. It is a molecular modeling program, which works on any operating system, including Winhttp://www.sccj.net/publications/JCCJ/ 143

dows, Macintosh, and Linux, on which the Java Virtual Machine is installed. Here are some of MOLDA s capabilities: 1. Handling proteins of up to 20,000 atoms and 2,000 residues. 2. Loading and saving coordinate data in common formats. 3. Easily creating a molecular model by mouse operations. 4. Loading Protein Data Bank (PDB) [6] format data and displaying sequence information. 5. Performing point mutations for PDB data. 6. Creating polypeptides with structures such as α- helices or β-sheets by entering the amino acid sequence. 7. Exporting data from molecular models created for use in molecular dynamics calculations (TINKER [7], Amber [8]), semi-empirical molecular orbital calculations (MOPAC [9]), and ab initio molecular orbital calculations (GAMESS [10], Gaussian [11]), as well as displaying molecular models structurally optimized by these programs. 8. Saving molecular models in VRML created for viewing on the Internet using a Web browser. As described above, MOLDA contains molecular modeling functions, such as protein modeling, and provides an interface with other major computational chemistry programs. The following section describes MOLDA s functions in detail and gives instructions for their use. 3 Results and Discussion 3.1 Menus 3.1.1 File Menu In the File menu, one can load and save molecular models in MOLDA format, import and export data in common chemistry and biology formats (PDB, CML [5, 12], MolFile [13]), save data for use in various computational chemistry programs (TINKER, Amber, MOPAC, GAMESS, Gaussian), and use the output of these. The molecular models in VRML can also be saved, so that they may be viewed on the WWW browser. In addition, one may load sequencing files in FASTA format and build three-dimensional polypeptide chain structures. This function allows one to specify the backbone conformation of polypeptides. Commonly used compounds, including fundamental organic compounds, amino acids, nucleotides, and sugars, are built in as template molecules. The molecular models that have been created may also be saved as substituents with the File menu. 3.1.2 View Menu In the View menu, one may display or hide the coordinate axes or atomic numbers of selected items. When loading molecular models, this menu allows one to adjust automatically the size and make connections between molecular models. Moreover, when PDB files are loaded, their sequence information and hydrogen bonds can be viewed. For a hydrogen bond to be made, however, the following two criteria must be met: the distance between the hydrogen donor and acceptor (currently oxygen only) must be within 1.2 2.76Å, and the angle of X H...O must be greater than 120 degrees (if hydrogen atoms are not displayed in the PDB file, no hydrogen bond will be displayed). 3.1.3 Model Menu In the Model menu, one may create alkanes, add hydrogen to skeletal atoms, connect substituents with molecules, replace atoms with other elements, and change bond lengths, bond angles, and dihedral angles. Also, the atoms, atom groups, and bonds may be deleted. Protein modeling functions available from the Model menu allow one to create α-helix polypeptides by inputting one-letter amino acid codes, as well as to perform point mutations for specified amino acid residues. 3.1.4 Display Menu In the Display menu, one may display molecular graphics using Java3D. This function is enabled only when the Java3D API is installed. 3.1.5 Analyze Menu In the Analyze menu, one may display coordinate values, interatomic distances, angles among three atoms, and dihedral angles of atoms specified with the mouse in the status bar. For PDB files, matrices for dihedral angles of amino acids (φ,ψ) will be output. An animation of molecular dynamics simulations is also available by importing Amber output files. 3.1.6 Help Menu The Help menu provides program version information. 3.2 Modeling Proteins MOLDA has functions that allow one to load a PDB file and edit protein structure to build proteins from scratch, 144 J. Comput. Chem. Jpn., Vol. 2, No. 4 (2003)

as well as functions for modeling of common organic compounds. 3.2.1 Loading PDB Files and Displaying Sequences When loading a PDB file, select [File]-[Import]-[Protein Data Bank (*.pdb)]. To view the sequence of the protein, enable [View]-[Sequence Viewer]. After clicking one of the amino acid residues listed in the sequence viewer and then pressing the OK button, corresponding amino acid residues will change color (Figure 1). In order to cancel, click the Cancel button. When clicking an atom in the protein model, the name of the amino acid residue in which that atom is included will appear in the status bar. Figure 2. EEIDQNV A polypeptide in a specified conformation may also be constructed by loading the amino acid sequence together with matrices for dihedral angles (φ,ψ). PDB files may be converted to this format by selecting [Analyze]- [Ramachandran]. The created data file in PDB may also be saved. 3.2.3 Point Mutations Figure 1. Heme in Cytochrome P450 (2C17) 3.2.2 Building Polypeptides Any polypeptide chain can be generated in MOLDA by entering its amino acid sequence. The easiest way is to use [Model]-[Input]-[Peptide]. Selecting [Model]- [Input]-[Peptide] will display a dialog box for one letter amino acid codes. If AAAAAAAAA is entered, for example, in this box, an alanine nonamer will be created in α-helix structure. Polypeptides may also be built by loading files containing one letter codes of amino acid sequences with [File]-[Import]-[Sequence]. In this method, if the top line of the file contains >ALPHA, a polypeptide will be created in α-helix structure; similarly, a β-sheet will be generated if the first line contains >BETA. For example, if the following text file is imported, the polypeptide will be created as shown in Figure 2. MOLDA allows point mutations for a loaded PDB file and amino acid residues of generated polypeptides. To substitute the glutamine (Q/GLN) of EEIDQNV for a histidine (H/HIS) as shown in Figure 3, select GLN5 in the Sequence Viewer and click the OK (GNL5 should be highlighted). When selecting [Model]-[Point Mutation], a dialog box will appear. Then enter HIS (the three letter code for the target amino acid residue) to replace the glutamine with a histidine (Figure 4). Note that this function is applicable only to PDB files which include amino acid residues. It may not be applied to data files processed by some MOLDA functions, such as those that attach amino acid residues or remove atom groups (if the PDB file is edited with a MOLDA function that does not support PDB format, it cannot be exported correctly. In that case, it must be saved in MOLDA format). It is also possible to bind the molecules saved in PDB format, and the resulting file may be a PDB data file. The following subsection gives an example of connecting polypeptides with a protein chain while leaving sequence information unchanged. http://www.sccj.net/publications/jccj/ 145

Figure 3. Point mutation Figure 5. Saving alanine nonamer as a substituent Figure 4. Results screen Figure 6. Alanine nonamer is connected 3.2.4 Connecting a Polypeptide Chain In [File]-[Save as a Substituent] and [Model]-[Merge]- [Substituent], one may use substituents data in PDB format, allowing one to model proteins without loss of sequence information. In this example, the polypeptide chain EEIDQNV in Figure 2 will be connected with an alanine nonamer in α-helix formation. The first step is to create an alanine nonamer as described previously. To view the atomic numbers and the sequence information, enable [View]-[Show Atom Number] and [View]- [Sequence Viewer] menu. After selecting [File]-[Save as a substituent], use the mouse to select H1, N2, and C3 as target atoms for forming bonds. The three selected atoms should be highlighted in yellow, and a dialog box will appear allowing one to save the alanine as a substituent (Figure 5). If one wishes to save substituent data in PDB format, the file name should include.pdb extension. In this example, save the file as a9.pdb, clear the data on the screen by clicking the button, then load the EEI- DQNV data saved in PDB format with [File]-[Export]- [Protein Data Bank (*.pdb)]. To load a9.pdb, select 146 J. Comput. Chem. Jpn., Vol. 2, No. 4 (2003)

[Model]-[Merge]-[Substituent] and click the Browse button. Finally, use the mouse to select the O110 atom of the valine in the EEIDQNV chain. Now a polypeptide molecule has been created by connecting the polyalanine molecule to the EEIDQNV chain. One can see 9 alanine added in the Sequence Viewer (Figure 6). 4 Conclusions The explosive development of computer chemistry and bioinformatics has changed the material and life sciences. MOLDA for Protein Modeling aims to help to unlock the secrets of various materials and life. It will contribute to developing nanotechnology and biotechnology on the basis of first principles by providing protein modeling functions, where computational chemistry and bioinformatics methods are effectively combined: the former allows the predicting of structures and reactivity of molecules based on quantum theory while the latter helps understanding of the program of life written in the molecular language. The author thanks the Information-technology Promotion Agency, Japan for financial support. MOLDA for Protein Modeling will be distributed from http://www.molda.org/. References [1] K. Ogawa, H. Yoshida, and H. Suzuki, Journal of the Association of Personal Computers for Chemists, 6, 21 (1984). [2] K. Ogawa, H. Yoshida, and H. Suzuki, J. Mol. Graphics, 2, 113 (1984). [3] K. Ogawa, H. Yoshida, and H. Suzuki, Introduction to Molecular Modeling and Molecular Mechanics Calculations on Personal Computers, Science House Inc., Tokyo (1986). [4] H. Yoshida and H. Matsuura, J. Chem. Software, 4, 81 (1998). [5] H. Yoshida, H. S. Rzepa, and A. P. Tonge, J. Mol. Graph. Mod., 16, 144 (1998). [6] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer Jr, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi, J. Mol. Biol., 112, 535 (1977). http://www.rcsb.org/pdb/ [7] J. W. Ponder, TINKER - Software Tools for Molecular Design version 4.0 (2003). http://dasher.wustl.edu/tinker/ [8] P. K. Weiner and P.A. Kollman, J. Comp. Chem., 2, 287 (1981). http://amber.scripps.edu/ [9] J. J. P. Stewart, QCPE Bull., 9, 10 (1989). [10] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 14, 1347 (1993). [11] M. J. Frisch et al., Gaussian 98, Gaussian, Inc., Pittsburgh, PA (1998). [12] P. Murray-Rust and H. S. Rzepa, J. Chem. Inf. Comp. Sci., 39, 928 (1999). [13] http://www.mdli.com/ http://www.sccj.net/publications/jccj/ 147

MOLDA for Protein Modeling: 739-8526 3-1 e-mail: yoshida@molda.org MOLDA MOLDA for Protein Modeling (1) Protein Data Bank (2) (3) (4) MOLDA :,, Protein Data Bank,, 148 J. Comput. Chem. Jpn., Vol. 2, No. 4 (2003)