Troubleshooting Gel Electrophoresis on the ABI 373 and ABI PRISM 377

Similar documents
Troubleshooting Guide for DNA Electrophoresis

Troubleshooting Polyacrylamide Gel Electrophoresis (PAGE)

Denaturing Gradient Gel Electrophoresis (DGGE)

Western Blotting For Protein Analysis

SDS-PAGE Protocol Mutated from the SDS-PAGE protocol written by the Lord of the Flies

Troubleshooting Sequencing Data

DNA Separation Methods. Chapter 12

2D gel electrophoresis

Objectives: Vocabulary:

SDS-PAGE. (June 23, 2005)

AGAROSE GEL ELECTROPHORESIS:

Running protein gels and detection of proteins

RAINBOW ELECTROPHORESIS 1 An Introduction to Gel Electrophoresis

EZ-PAGE Electrophoresis System USER MANUAL

EZ-Run Protein Gel Solution. EZ-Run Protein Standards. EZ-Run Gel Staining Solution. Traditional SDS-Page Reagents. Protein Electrophoresis

Protocol Micro Lab. K:\Microlab_protocols\Protocols_active\03 Instrument manuals\ml03_001_001 DGGE.doc. Preparation of gels

DNA SEQUENCING (using an ABI automated sequencer)

Section III: Loading and Running DNA in Agarose Gels

7 Electrophoresis. µ proportional to Q

2. Cut 6 sheets of Whatman 3MM paper and 1 sheet of blotting membrane to the size of the gel, or slightly smaller.

Sanger Sequencing and Quality Assurance. Zbigniew Rudzki Department of Pathology University of Melbourne

WESTERN BLOTTING TIPS AND TROUBLESHOOTING GUIDE TROUBLESHOOTING GUIDE

Northern blot analysis for microrna. (Narry Kim s lab)

Western Blotting: Mini-gels

Technical Manual No Update date

Sanger Sequencing. Troubleshooting Guide. Failed sequence

Sequencing Guidelines Adapted from ABI BigDye Terminator v3.1 Cycle Sequencing Kit and Roswell Park Cancer Institute Core Laboratory website

Southern Blot Analysis (from Baker lab, university of Florida)

Operator Quick Guide EC SENSOR

Lab 5: DNA Fingerprinting

Chapter 14 SDS-PAGE. Objectives

PCR and Sequencing Reaction Clean-Up Kit (Magnetic Bead System) 50 preps Product #60200

2D gel Protocol. 2. Determining Protein Concentration of cell lysates

Gel Electrophoresis Teacher Instructions Suggested Grade Level: Grades 7-14 Class Time Required: 1 period (50 minutes)

DNA Sequencing Setup and Troubleshooting

In vitro analysis of pri-mirna processing. by Drosha-DGCR8 complex. (Narry Kim s lab)

HiPer RT-PCR Teaching Kit

Electrophoresis and Electroblotting of Proteins

AIRMoN, ph and Conductivity Field Measurement

Section XIII: Protein Separation in Agarose Gels

TIANquick Mini Purification Kit

Electrophoresis, cleaning up on spin-columns, labeling of PCR products and preparation extended products for sequencing

ELUTION OF DNA FROM AGAROSE GELS

Agilent High Sensitivity DNA Kit Guide

ISOLATE II PCR and Gel Kit. Product Manual

Plant Genomic DNA Extraction using CTAB

Dye-Blob message: Example: Generally, this is due to incomplete excess dye removal of the cycle sequence reaction.

The Influence of Carbon Dioxide on Algae Growth

DNA: A Person s Ultimate Fingerprint

DNA Electrophoresis Lesson Plan

SDS-PAGE and Western Blotting with the Odyssey Infrared Imaging System Entered by Kevin Janes Janes Lab Protocols 12/9/14

Experiment 5 Preparation of Cyclohexene

Aurora Forensic Sample Clean-up Protocol

MICB ABI PRISM 310 SEQUENCING GUIDE SEQUENCING OF PLASMID DNA

Nucleic Acid Electrophoresis Cell

UltraClean Soil DNA Isolation Kit

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

Determination of a Chemical Formula

Agarose Gel Electrophoresis with Food Color- Teacher Guide

UltraClean PCR Clean-Up Kit

Amino Acids, Peptides, and Proteins

LAB 7 DNA RESTRICTION for CLONING

INSTRUCTIONS Edition AC

WESTERN BLOT DETECTION KIT Buffers and detection reagents for up to ten 10 x 10 cm 2 blots. Fluorescent detection via: Goat anti-mouse SureLight P3

HiPer Immunoelectrophoresis Teaching Kit

Western Blotting. USA: UK & Europe: europe@ptglab.com China: service@ptglab.com.

Protocol v001 Page 1 of 1 AGENCOURT RNACLEAN XP IN VITRO PRODUCED RNA AND CDNA PURIFICATION

Care and use guide. Contents. a handy solution made easy. page

3. Nucleic Acids Electrophoresis. Agaroses Acrylamides Buffers & Reagents for DNA Electrophoresis DNA Ladders Horizontal Electrophoresis System

Compromise Elsewhere Protocols. Western Blotting Methods ROCK 1 of 11

Gel Electrophoresis: How Does It Work? Revised 5/11/96

RESTRICTION ENZYME ANALYSIS OF DNA

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

HiPer Total RNA Extraction Teaching Kit

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

The DCode Universal Mutation Detection System

LAB 14 DNA Restriction Analysis

For safety information, see the ABI PRISM 310 Genetic Analyzer User s Manual (PN or ).

Recovery of Elemental Copper from Copper (II) Nitrate

METHOD USED TO EXTRACT TOTAL MUSCLE PROTEIN FOR WESTERN BLOT USING TRIS-EDTA BUFFER*

Terra PCR Direct Polymerase Mix User Manual

Hands-On Labs SM-1 Lab Manual

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

STANDARD OPERATING PROCEDURE

Protease Peptide Microarrays Ready-to-use microarrays for protease profiling

Experiment 8 Synthesis of Aspirin

Wizard DNA Clean-Up System INSTRUCTIONS FOR USE OF PRODUCT A7280.

CHAPTER 5 Troubleshooting DNA Sequencing Data

LAB 11 PLASMID DNA MINIPREP

8.9 - Flash Column Chromatography Guide

Section IV: Detection and Sizing of DNA in Agarose Gels

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

Automated DNA Sequencing. Chemistry Guide

EXTRACTION OF DNA FROM CALF THYMUS CELLS Revised 2/1/96 Introduction

Paper Chromatography: Separation and Identification of Five Metal Cations

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

RAGE. Plugs for RAGE/PFGE

Genomic DNA Extraction Kit INSTRUCTION MANUAL

AxyPrep TM Mag PCR Clean-up Protocol

CHRISTIAN LAB WESTERN BLOT PROTOCOL

Transcription:

Troubleshooting Gel Electrophoresis on the ABI 373 and ABI PRISM 377 Overview Poor-Quality Acrylamide This section shows examples of common problems that can occur with gel electrophoresis. Refer to the table on page 7-53 for a more complete guide to troubleshooting gel electrophoresis. Use fresh, high-quality acrylamide. Poor quality acrylamide contains acrylic acid (a deamidation product) and linear polyacrylamide, which will copolymerize and cause local ph changes in the gel. This causes streaking and smearing of bands (Figure 7-50). During storage at room temperature, especially in water, acrylamide breaks down into acrylic acid. Prepare only as much acrylamide-bisacrylamide solution as you will need in a month. Figure 7-50 Effect of poor quality acrylamide on sequencing data 7-44 Data Evaluation and Troubleshooting

Salt Excess salt in the wells can cause pinching of lanes toward the center of the gel (Figure 7-51). Note Lanes 3 8 are short PCR products. Lane 11 was not loaded. When performing ethanol precipitation, remove all of the ethanol by aspiration after the first spin. If residual ethanol is dried down with the sample, the pinching and bending of lanes is worsened. Performing a 70% ethanol wash after ethanol precipitation of dye terminator reactions also helps to alleviate this problem. Figure 7-51 lowered. Effect of excess salt on an ABI PRISM 377 gel. The overall signal strength is also Data Evaluation and Troubleshooting 7-45

Fluorescent Contaminants Contaminating fluorescent species can obscure sequencing data completely. A common cause of fluorescent contamination is ink from marker pens. Do not write on the gel plates, spacers, combs, or buffer chambers. In Figure 7-52, a large green band is seen shortly after the first fragments are detected. The band is from a marking pen that was used to label a spacer. Even though the spacer was cleaned before use, enough ink remained to ruin the sequencing data. Figure 7-52 Fluorescent contamination from a marking pen 7-46 Data Evaluation and Troubleshooting

Buffer Leaks If buffer spills or leaks onto the read region of the gel plates, it can cause blue or green artifacts on the gel image (Figure 7-53). To avoid buffer leaks, make sure that the plates are clamped correctly and that the upper buffer chamber gasket makes a proper seal. Do not spill buffer behind the upper buffer chamber, as wicking can occur. Figure 7-53 Buffer leak in the read region of the plates Buffer leaks or evaporation also can cause electrophoresis failure if there is not enough buffer for electrophoresis. Note that electrophoresis fails at the same point in each sample (Figure 7-54 on page 7-48), causing diffuse bands to appear throughout the rest of the run. Data Evaluation and Troubleshooting 7-47

Figure 7-54 Electrophoresis failure caused by a buffer leak To prevent this from happening: Clean the front plate well, so the gasket will make a good seal. Use the lid on the upper buffer chamber. Take care when filling the upper buffer chamber not to spill buffer behind it. Do not fill the upper buffer chamber to the top because buffer will wick over the ears of the notched plate and run down the sides or back of the gel plates. Check gasket for leaks before starting the run. 7-48 Data Evaluation and Troubleshooting

Red Rain Gel destruction in the read region of the gel can cause red streaks in the data, often near the end of the run (and therefore near the top of the gel image). This effect, shown in Figure 7-55, is known as red rain. Gel destruction often results from drying out of the gel, and is exacerbated by extreme run conditions, e.g., high voltage, high power, high temperature, and long run times. The following can be used to help prevent red rain: Wrap the gel plates to prevent the gel from drying out. Lower the run temperature from 51 C to 48 C. A lower temperature results in a slower run speed. Less data is collected in the same run time. A lower temperature also means less denaturing power in the gel, which can lead to more extension product secondary structure in the gel. This can result in more compressions, particularly with dye primer chemistries (see page 7-31). Figure 7-55 Red rain on a 48-cm, 36-lane ABI PRISM 377 gel Data Evaluation and Troubleshooting 7-49

Gel Extrusion When voltage is applied on the ABI PRISM 377 DNA Sequencer, the polyacrylamide gel sometimes moves from between the glass gel plates toward the cathode (upper electrode) and into the upper buffer chamber. In extreme cases, up to about five centimeters of gel in a folded sheet can be deposited in the chamber. This gel extrusion usually begins at the start of a run or even during the prerun. It is believed to be caused by a buildup of charge on the surface of the glass plate such that the gel is not bound to the plate after pouring. As the voltage is applied, the gel migrates toward the upper electrode. The gel image can show a variety of anomalous effects, including catastrophic loss of resolution, lane splitting, extreme band tilt, and band distortion (Figure 7-56). Almost all known cases of gel extrusion have been resolved by either acid washing or alcoholic KOH washing. Refer to the cleaning procedures on page 4-9. Figure 7-56 Effect of gel extrusion on sample migration 7-50 Data Evaluation and Troubleshooting

Temporary Loss of Signal This problem usually occurs at the beginning of the gel (between 150 and 250 base pairs in the analyzed data). It manifests itself as a band of little or no signal across the entire width of the gel image (Figure 7-57). Temporary loss of signal has been traced to contaminants on the gel plates. These contaminants include surfactants, fatty acids, and long chain polymers that are not removed when the plates are washed. Rinsing glass plates with hot deionized water (90 C) has been found to remove the contaminants that cause temporary loss of signal. Refer to page 4-9 for more information. Figure 7-57 Portion of an ABI PRISM 377 gel image showing temporary loss of signal. The vertical blue line is from dust in the read region of the gel. Data Evaluation and Troubleshooting 7-51

Poor-Quality Gel Plates Plates from vendors other than PE Applied Biosystems may not have adequate quality control for use on our instruments. Several problems result from poor quality plates, including warping. Figure 7-58 shows data from plates that warped after 6 months of use. When plates become warped, the laser is no longer focused correctly on the gel. When this occurs on the ABI 373 DNA Sequencer, laser light is scattered back to the detector, causing the gel image to appear blue and green and obscuring data. On the ABI PRISM 377 DNA Sequencer, there is a filter to keep out most of the scattered laser light. Data quality still suffers because the scattering results in less excitation of the dyes by the laser. Always use high-quality gel plates. Figure 7-58 Effect of warped gel plates on ABI 373 sequencing data 7-52 Data Evaluation and Troubleshooting

Troubleshooting Gel Electrophoresis Observation Possible Causes Recommended Actions Gel runs too quickly Total polymer concentration too low Check reagents. Prepare new solutions Bisacrylamide concentration too low using fresh reagents. Buffer concentration too high Note Do not use TBE buffer if it has precipitate in it. Gel runs too slowly Total polymer concentration too high Check reagents. Prepare new solutions Bisacrylamide concentration too high Buffer concentration too low Old gel using fresh reagents. Use gels within 2 6 hours of casting for the ABI PRISM 377 DNA Sequencer. Use gels within 18 24 hours of casting for the ABI 373 DNA Sequencer. Poor resolution caused by gel Visible non-homogeneity (Schlieren pattern or swirl in gel) Poor quality reagents, especially acrylamide (see Figure 7-50 on page 7-44), APS, and TEMED Small bubble between load and read region Well shape not flat Old gel Variation in spacers Temperature of room, gel solution, or glass too warm or cool during polymerization Excessive TEMED or APS Temperature too high Insufficient reagent mixing IMPORTANT Do not refrigerate. Use fresh reagents from a reliable source. Clean plates thoroughly. Cast gel carefully. Remove bubble by tapping plates while pouring. Assure that no air bubbles are trapped by casting comb at gel surface. Do not push the sharktooth comb too far into the gel. Use gels within 2 6 hours of casting for the ABI PRISM 377 DNA Sequencer. Use gels within 18 24 hours of casting for the ABI 373 DNA Sequencer. IMPORTANT Do not refrigerate. Use spacers and comb sets that are equal thickness. 20 23 C is optimal. Check reagents. Prepare new solutions using fresh reagents. Polymerize at 20 23 C. Mix reagents gently, but thoroughly. Data Evaluation and Troubleshooting 7-53

Troubleshooting Gel Electrophoresis (continued) Observation Possible Causes Recommended Actions Polymerization too slow (gels should polymerize within 15 20 minutes) Gel loses signal around 200 bp (see page 7-51) Excessive dissolved oxygen Not enough TEMED or APS (or degraded) Temperature too low during casting Did not use deionized water Contaminant polymers on plate surface Keep vacuum filter strength/time constant. Stir and pour gel gently. Filter and pour gel at 20 23 C. Check reagents. Prepare new solutions using fresh reagents. Polymerize at 20 23 C. Use only deionized or distilled water for making all solutions. Wash plates with mild detergent and hot deionized water rinses. Lanes appear as smears Impure or degraded TEMED or APS Use fresh reagents. Samples are overloaded Follow loading procedure. Gel image contains vertical red streaks near end of run (top of gel image) ( red rain, see Figure 7-55 on page 7-49 Gel image contains green/blue streaks throughout run (see Figure 7-52 on page 7-46) Blue or green streaks ( curtain ) at top of gel image (see Figure 7-53 on page 7-47) Blue or green curtain obscuring entire gel image (see Figure 7-58 on page 7-52) Green streak through entire gel lane Electrophoresis failure due to buffer leak (see Figure 7-54 on page 7-48) Gel destruction in read region Fluorescent contaminant in gel Urea crystals present in gel Particles on outer surface of plates in read region Buffer leak Warped gel plate Protein in template Make sure that the plates are clamped correctly, and that the upper buffer chamber gasket makes a proper seal. Do not spill buffer behind the upper buffer chamber, as wicking can occur. Wrap the gel to prevent drying. Run at a lower temperature or voltage. Vacuum filter solution. Cast gel in dust-free environment. Use room temperature reagents. Pour at 20 23 C. IMPORTANT Do not refrigerate. Wipe read region with damp lint-free KimWipe Make sure that the plates are clamped correctly, and that the upper buffer chamber gasket makes a proper seal. Do not spill buffer behind the upper buffer chamber, as wicking can occur. Use gel plates from PE Applied Biosystems. Clean up the template before performing sequencing reactions. Greenish-yellow haze Poor gel plate alignment Remove the gel plates and realign them correctly. Fluorescent contaminant in gel Use fresh reagents. Do not write on the gel plates with marking pens. Residual detergent on plates Rinse plates thoroughly with hot deionized water. 7-54 Data Evaluation and Troubleshooting