2 Atmospheric Pressure

Similar documents
Chapter 4 Atmospheric Pressure and Wind

Name: OBJECTIVES Correctly define: WEATHER BASICS: STATION MODELS: MOISTURE: PRESSURE AND WIND: Weather

barometer 1 of 5 For the complete encyclopedic entry with media resources, visit:

Activity 8 Drawing Isobars Level 2

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Page 1. Weather Unit Exam Pre-Test Questions

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Basics of weather interpretation

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below.

Lecture 4: Pressure and Wind

The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

CHAPTER 3: FORCES AND PRESSURE

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections

2. The map below shows high-pressure and low-pressure weather systems in the United States.

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?

Lecture 1: A Brief Survey of the Atmosphere

For further information, and additional background on the American Meteorological Society s Education Program, please contact:

Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

Pressure & Density. Pressure is defined as force divided by area (force/area) One can also assume that pressure = weight/area.

How to analyze synoptic-scale weather patterns Table of Contents

Temperature. PJ Brucat

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

= 800 kg/m 3 (note that old units cancel out) J 1000 g = 4184 J/kg o C

Atmospheric Stability & Cloud Development

Lesson 6: Earth and the Moon

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

8.5 Comparing Canadian Climates (Lab)

THE HUMIDITY/MOISTURE HANDBOOK

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Weather Instruments, Maps and Charts

Thought Questions on the Geostrophic Wind and Real Winds Aloft at Midlatitudes

CHAPTER 12. Gases and the Kinetic-Molecular Theory

Physics 1114: Unit 6 Homework: Answers

Ambient Pressure = and Pressure, collectively

Convective Clouds. Convective clouds 1

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude

Lab Activity on Global Wind Patterns

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,

CHEMISTRY GAS LAW S WORKSHEET

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

State Newton's second law of motion for a particle, defining carefully each term used.

Pressure. Curriculum for Excellence. Weather and Climate Cross-curricular project Section 2. Background Information:

Kinetic Molecular Theory and Gas Laws

Mid latitude Cyclonic Storm System. 08 _15 ab. jpg

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES

EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES

Weather Map Symbols, Abbreviations, and Features

Chapter 6: Cloud Development and Forms

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

KINETIC MOLECULAR THEORY OF MATTER

atm = 760 torr = 760 mm Hg = kpa = psi. = atm. = atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

ATM 316: Dynamic Meteorology I Final Review, December 2014

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

EUROCONTROL Guidelines for Cold Temperature Corrections by ATS

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

Write True or False in the space provided.

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Dynamics IV: Geostrophy SIO 210 Fall, 2014

AP Physics Course 1 Summer Assignment. Teachers: Mr. Finn, Mrs. Kelly, Mr. Simowitz, Mr. Slesinski

How to measure absolute pressure using piezoresistive sensing elements

WEATHER AND CLIMATE practice test

How Do Oceans Affect Weather and Climate?

SURFACE TENSION. Definition

Determining Equivalent Weight by Copper Electrolysis

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

Chapter 10 Temperature and Heat

Natural Convection. Buoyancy force

_CH06_p qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

ebb current, the velocity alternately increasing and decreasing without coming to

Air Masses and Fronts

IDEAL AND NON-IDEAL GASES

Evolution of the Thermometer

An Analysis of the Rossby Wave Theory

Understanding the altimeter

Physics 101 Hour Exam 3 December 1, 2014

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

Gas Laws. vacuum. 760 mm. air pressure. mercury

CSUS Department of Chemistry Experiment 8 Chem.1A

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

Exploring Florida: Teaching Resources for Science 1 of 6

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Molar Mass of Butane

How do Scientists Forecast Thunderstorms?

ATMS 310 Jet Streams

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Transcription:

2 Atmospheric Pressure meteorology 2.1 Definition and Pressure Measurement 2.1.1 Definition Pressure acts in all directions, up and sideways as well as down, but it is convenient in meteorology to regard atmospheric pressure as the weight of an air column acting on unit area, see fig. ME 2.1. 2.1.2 The Mercury Barometer The Italian physicist Torricelli invented the Mercury barometer in the 17th century, see fig. ME 2.2. Vacuum Column of air with weight (W) Surface area (A) Pressure at this level = W A Atmospheric pressure Mercury column Atmospheric pressure Fig. ME 2.1 Atmospheric pressure Fig. ME 2.2 Mercury barometer The units of pressure are Force divided by Area (or Force per Unit Area N/m 2 or Pa (Pascal)). The unit of pressure in meteorology is the hecto Pascal (hpa) which replaces the millibar (mb) which was in use in former times. However the units are of identical magnitude, therefore: 1 mb = 1 hpa Atmospheric pressure forces mercury to rise in an evacuated glass tube. The unit of pressure was then mm Hg (Hg is the abbreviation for mercury). This unit has been replaced by the SI-unit hecto Pascal, hpa. The reading of a mercury barometer has to be manually corrected for the temperature of the mercury column and gravity at each site. Atmospheric Pressure 2-1

meteorology 760 mm Hg = 1013 hpa In the USA barometric pressure is still measured in inches Hg: variations. This is used to provide a meteorologist with the pressure tendency, or rise and fall of pressure over time and is an important forecasting tool, see fig. ME 2.4. 29.92 inches Hg = 1013 hpa. 2.1.3 Aneroid Barometer The aneroid barometer consists of a flexible metallic capsule which is partially evacuated. It compresses under small increases in air pressure and the capsule compression/ expansion is converted by a lever system to drive a pointer on an amplified scale. It is a much more convenient and portable system than a mercury barometer, see fig. ME 2.3. Amplifying levers Protective case Aneroid cell Record paper on cylinder Noon 10 8 6 1020 1015 1010 1005 995 Ink trace Graduated scale Fig. ME 2.4 Barograph 2.2 Pressure Reduction to Mean Sea Level and Pressure Systems Lever system Fig. ME 2.3 Aneroid barometer Aneroid capsule 2.1.4 The Barograph The barograph is an aneroid barometer used in conjunction with a recording drum. Instead of a needle and graduated scale the lever mechanism moves a pointer which leaves an ink trace on a scaled recording paper wrapped around the drum. This leaves a permanent record of the pressure 2.2.1 Pressure at the Surface QFE The atmospheric pressure measured on a barometer at an airfield is known as the QFE or Aerodrome Pressure. The QFE varies widely, both from day to day and place to place, due to variations in the weight of the air column above the surface 2.2.2 Pressure at Mean Sea Level QFF Since QFE is measured at station level, it is not immediately usable for meteorological purposes because of the differences in altitude of the observing stations. In order to 2-2 Atmospheric Pressure

be usable in meteorology all pressures need to be measured at the same level. Therefore QFE values have to be adjusted to Mean Sea Level (MSL) and the adjusted pressure is known as QFF. Sea level C 952 894 A 979 B 600 m 1100 m 300 m Sea level D meteorology In temperate latitudes QFF varies between 970 hpa and 1030 hpa, but occasionally pressure falls as low as 900 hpa or rises as high as 1060 hpa. In different countries different methods are used to calculate this QFF. Sometimes the method is dependent on season. All methods use the observed temperature at the station and some type of assumed temperature profile down to or up to sea level. In meteorology this is called reduction. Once reduction is done, all points with the same QFF can be joined up with lines of constant pressure referred to as isobars. 2.2.3 Pressure Systems In order to forecast weather it is important to know the distribution of pressure at mean sea level. Isobars are usually drawn at intervals 1, 2, 4, 5 or 10 hpa, the custom varies with latitude and country. Local barometric pressures at observation stations (QFE) above sea level are adjusted for the difference in height to bring them all to a common datum, normally Mean Sea Level (MSL) to enable a chart of pressure distribution to be drawn known as a synoptic chart. The adjusted MSL pressures are known as the QFF, see fig. ME 2.5. A B C W +60 hpa +30 hpa +110 hpa +0 hpa Fig. ME 2.5 Surface isobars Isobars Pressure Patterns Revealed by the Isobars are: Anticyclones or Highs These are regions where the pressure at its centre is highest relative to its surroundings. The circulation is clockwise in the northern hemisphere and anticlockwise in the southern hemisphere. Ridge or Wedge A region of isobars extending away from a high centre. Pressure along the line of the ridge is higher than its surroundings. Depressions or Lows (or Cyclones) These are regions where the pressure at its centre is lowest relative to its surroundings. The circulation is anticlockwise in the N 1012 hpa 1009 hpa 1004 hpa hpa 1015 1013 A B 1012 S 1008 C 1004 1007 1009 1004 1012 1002 1006 1003 D 998 E Atmospheric Pressure 2-3

meteorology northern hemisphere and clockwise in the southern hemisphere. Trough A trough is a region of isobars extending away from a low centre and may have sharp curvature. Pressure along the line of the trough is lower than its surroundings. Col A col is a region of nearly uniform pressure situated between a pair of highs and a pair of lows. Wind circulation around pressure systems is usually along the isobars, see fig. ME 2.6. atmosphere as the weight of the air column above reduces. How much it reduces depends upon the gravitational acceleration and density of the air column, see fig. ME 2.7. From fig. ME 2.7 it can be seen that the most 1 hpa 5 hpa 10 hpa 25 hpa 50 hpa Above 99.9 % Above 99 % Above 90 % 50 40 30 20 Altitude (km) 1011 H 1008 1011 1005 1014 1002 1017 Mt. Everest Above 50 % 0 100 300 500 700 900 Pressure (hpa) 10 0 1008 1017 Col Fig. ME 2.7 Variation of pressure with height 1014 Ridge Trough L 1002 1008 1005 Fig. ME 2.6 Wind circulation around pressure systems 2.3 Vertical Pressure Distribution 2.3.1 Variation of Pressure with Height The pressure at any level in the atmosphere is equal to the weight of air column above a surface of 1m 2. It follows therefore that pressure must reduce with height in the rapid decrease in pressure with height is in the troposphere up to about 500 hpa at which point about 50% of the atmosphere is below this level. The rate of pressure decrease with height begins to decrease significantly as one approaches the tropopause. The pressure will of course be determined by the density of the air above. Table ME 2.1 shows the height change at various altitudes for a pressure change of 1 hpa. 2-4 Atmospheric Pressure

Height MSL 18 000 ft (500 hpa) 39 000 ft (200 hpa) Table ME 2.1 Height variation for 1 hpa pressure change at various heights 2.4 Atmospheric Density 2.4.1 Density Height difference for a change of 1 hpa 27 ft 50 ft 100 ft Density is defined as mass per unit volume, expressed in kg/m 3. When air is heated it expands, and the same mass (or weight) occupies a larger volume and so density becomes less. As pressure decreases with height the density of the air is decreasing as well. This will also be dependent on the temperature of the air as warm air is less dense than cold air and warm columns of air will be taller than cold air columns. Assume two columns of air both have the same height and surface pressure. If one column is cooled while the other is heated, the colder column will be more dense and contain less air above the fixed datum of 10 000 ft. The warm column will expand, decreasing in density and pushing more air above the fixed datum, see fig. ME 2.8. The pressure at 10 000 ft in the cold column will therefore be less than the pressure at 10 000 ft in the warm air column. This will create pressure differences aloft and result in winds aloft. The rate of decrease of pressure with height is therefore greater in the cold air than in the warm air, so at any height above the surface the pressure aloft will be lower in the cold air than in the warm air. meteorology 500 hpa 8 800 ft 700 hpa 10 000 ft 8 000 ft 7 200 ft 11 000 ft 10 000 ft 9 000 ft hpa Warm/low density Cold/high density Fig. ME 2.8 Density variations Atmospheric Pressure 2-5

meteorology 2.4.2 Density of Dry and Moist Air As stated earlier, dry air is made up of 78% nitrogen and about 21% oxygen. When water vapour is introduced into the air it displaces the O 2 and N 2 molecules. The atomic mass of N 2 is 28 and O 2 is 32, both heavier than H 2 O with an atomic mass of 18. Thus the density of moist air is less than the density of dry air. change of 27 ft for 1 hpa pressure change, and 50 ft at 500 hpa. Due to variations in surface pressure and density of the air column aloft a more accurate method of calculating the height between layers in the atmosphere is used for the calculation. Data from the upper air is obtained by sending up a radiosonde. 2.4.3 Behaviour of Air Air behaves according to the Ideal Gas Equation p = T x ρ x C or Equation of State as it is sometimes called. 2.4.4 Pressure and Height Calculations It is also useful to know what increase of height corresponds to a pressure change of 1 hpa for any particular value of temperature and pressure. A rough estimate may be made using the following formula: (Note, this formula need not be memorised for exam purposes). The data is then used to calculate the thickness or height of the various layers in the atmosphere and then used to derive the absolute height of the isobaric surfaces above mean sea level and so to construct contour charts. The pressure/height formula is used for calculation. h -h = 221.1 x T x (log p -log p ) 2 1 10 1 10 2 While it is not necessary to remember or use the formula in the examination it is reproduced here to emphasise that the height of the pressure levels in the atmosphere is directly dependent on the mean temperature (T), of the atmospheric column above the surface. 96T p ft/hpa Where: - T is mean temperature on the Kelvin scale and - P is the mean pressure in hpa. Thus at a sea level pressure of 1013 hpa and 15 C (288K) there is approximately a height 2-6 Atmospheric Pressure