THE STRUCTURE OF MOLECULES AN EXPERIMENT USING MOLECULAR MODELS 2009 by David A. Katz. All rights reserved.

Similar documents
Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Laboratory 11: Molecular Compounds and Lewis Structures

5. Structure, Geometry, and Polarity of Molecules

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 9 Dot Structures and Geometries of Molecules

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Molecular Geometry and Chemical Bonding Theory

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

CHAPTER 12: CHEMICAL BONDING

Chemistry Workbook 2: Problems For Exam 2

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.

Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Self Assessment_Ochem I

CH101/105, GENERAL CHEMISTRY LABORATORY

SHAPES OF MOLECULES (VSEPR MODEL)

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion

2. Atoms with very similar electronegativity values are expected to form

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies

Ionic and Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

CHEMISTRY BONDING REVIEW

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

Bonding & Molecular Shape Ron Robertson

5. Which of the following is the correct Lewis structure for SOCl 2

Molecular Models Experiment #1

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 2 The Chemical Context of Life

Molecular Models in Biology

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES

ACE PRACTICE TEST Chapter 8, Quiz 3

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Survival Organic Chemistry Part I: Molecular Models

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu

: : Solutions to Additional Bonding Problems

Chapter 10 Molecular Geometry and Chemical Bonding Theory

ch9 and 10 practice test

Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O..

Chapter 8 Concepts of Chemical Bonding

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

Covalent Bonding and Molecular Geometry

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

We will not be doing these type of calculations however, if interested then can read on your own

Chemistry 105, Chapter 7 Exercises

Molecular Structure and Polarity

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Exercises Topic 2: Molecules

OCTET RULE Generally atoms prefer electron configurations with 8 valence electrons. - Filled s and p subshells

Chapter 4 Lecture Notes

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

CHEMISTRY Practice Exam #5 - SPRING 2014 (KATZ)

POLARITY AND MOLECULAR SHAPE WITH HYPERCHEM LITE

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

1.3 STRUCTURES OF COVALENT COMPOUNDS

Bonding Practice Problems

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 9 - Covalent Bonding: Orbitals

Modelling Compounds. 242 MHR Unit 2 Atoms, Elements, and Compounds

Worksheet 14 - Lewis structures. 1. Complete the Lewis dot symbols for the oxygen atoms below

CHAPTER 6 Chemical Bonding

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Valence Bond Theory: Hybridization

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Chapter 5 Chemical Compounds

AP* Bonding & Molecular Structure Free Response Questions page 1

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules.

Geometries and Valence Bond Theory Worksheet

Chapter 8: Covalent Bonding and Molecular Structure

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

CHAPTER 10 THE SHAPES OF MOLECULES

Molecular Models & Lewis Dot Structures

pre -TEST Big Idea 2 Chapters 8, 9, 10

Chapter 2 Polar Covalent Bonds: Acids and Bases

1.2 CLASSICAL THEORIES OF CHEMICAL BONDING

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Transcription:

THE STRUCTURE OF MOLECULES AN EXPERIMENT USING MOLECULAR MODELS 2009 by David A. Katz. All rights reserved. In a footnot to a 1857 paper, Friedrich August Kekulé suggested that carbon was tetratomic, that is, carbon has a valence of 4. In 1858, Kelkulé stated When the simplest compounds of this element are considered (marsh gas, methyl chloride, chloride of carbon, chloroform, carbonic acid, phosgene, sulphide of carbon, hydrocyanic acid, etc.) it is seen that the quantity of carbon which chemists have recognized as the smallest possible, that is, as an atom, always unites with 4 atoms of a monoatomic or with 2 atoms of a diatomic element; that in general the sum of the chemical units of the elements united with one atom of carbon is 4. This leads us to the view that carbon is tetratomic or tetrabasic. In the cases of substances which contain several atoms of carbon, it must be assumed that at least some of that atoms are in the same way held in the compound by the affinity of carbon, and the carbon atoms attach themselves to one another, As early as 1870, graphic formulas of carbon compounds were drawn as shown: H H H Methane H C H ethylene C = C H H H These drawings imply that the atom-atom linkages, indicated by valence strokes, lie in plane. In 1874, Jacobus Henricus van 't Hoff and Joseph Achille LeBel, independently, proposed that the four bonds of carbon were arranged three dimensionally, pointed toward the corners of a tetrahedron. The tetrahedral carbon atom is sometimes referred to as the Van't Hoff-Le Bel theory. The threedimensional structure of methane can be represented by a diagram known as a Fischer projection: The physical significance of the chemical linkages between atoms, expressed by the lines or valence strokes in molecular structure diagrams, became evident soon after the discovery of the electron. In 1916 in a classic paper, G. N. Lewis suggested, on the basis of chemical evidence, that the single bonds in graphic formulas involve two electrons and that an atom tends to hold eight electrons in its outermost or valence shell. Lewis' proposal that atoms generally have eight electrons in their outer shells is known as the octet rule. It can be applied to many atoms, but is particularly important in the treatment of covalent compounds of atoms in the second and third rows of the Periodic Table. For atoms such as carbon, oxygen, nitrogen, and fluorine, the eight valence electrons occur in pairs that occupy tetrahedral positions around the central atom core. Some of the electron pairs do not participate directly in chemical bonding and are called unshared or nonbonding pairs; however, the structures of compounds containing such unshared pairs reflect the tetrahedral arrangement of the four pairs of valence shell electrons. In the H 2 O molecule, which obeys the octet rule, the four pairs of electrons around the central oxygen atom occupy essentially tetrahedral positions; there are two unshared nonbonding pairs and two bonding pairs that are shared by the O atom and the two H atoms. The H O H bond angle is nearly but not exactly tetrahedral since the properties of shared and unshared pairs of electrons are not exactly alike.

Essentially, all organic molecules obey the octet rule, and so do most inorganic molecules and ions. For species that obey the octet rule it is possible to draw electron-dot, or Lewis, structures. The drawing of the H 2 O molecule, above, is an example of a Lewis structure. In a Lewis structure there are eight electrons around each atom (except for H atoms, which always have two electrons) Group 2A atoms which form 2 bonds have 4 electrons and Group 3A atoms which form 3 bonds have 6 electrons. There are two electrons in each bond (designated by a line). When counting electrons in these structures, one considers the electrons in a bond between two atoms as belonging to the atom under consideration. Thus, electrons may be counted twice, once for each atom in the bond. The bonding and nonbonding electrons in Lewis structures are all from the outermost shells of the atoms involved, and are the so-called valence electrons of those atoms. For the main group elements, the number of valence electrons in an atom is equal to the group number of the element in the Periodic Table. Hydrogen in Group 1 has one valence electron, carbon, in Group 4, has four valence electrons, and chlorine, in Group 7, has seven valence electrons. In an octet rule structure the valence electrons from all the atoms are arranged in such a way that each atom, except hydrogen and the Group 2 and Group 3 atoms, have eight electrons. Construction of an octet rule structure for a molecule can be accomplished by counting the number of electrons. Using water as an example, an oxygen atom has six valence electrons (Group 6) and a hydrogen atom has one, the structure would need one O and two H atoms have a total of eight valence electrons; the octet rule structure for H 2 O can be observed in the structure shown earlier. Structures like that of H 2 O, which involve only single bonds and nonbonding electron pairs, are common. Sometimes, however, there is a "shortage" of electrons; that is, it is not possible to construct an octet rule structure in which all the electron pairs are either in single bonds or are nonbonding pairs. Ethene or ethylene, C 2 H 4, is a typical example of such a species. In such cases, octet rule structures can often be made in which two atoms are bonded by two electron pairs, rather than one pair. The two pairs of electrons form a double bond. In the C 2 H 4 molecule, shown below, the C atoms each get four of their electrons from the double bond. The assumption that electrons behave this way is supported by the fact that the C=C double bond is both shorter and stronger than the C C single bond in the C 2 H 6 molecule. Double bonds, and triple bonds, occur in many molecules, usually between C, O, N, and/or S atoms. Ethene or ethylene H H C = C H H Lewis structures can be used to predict molecular and ionic geometries by assuming that the four pairs of electrons around each atom are arranged tetrahedrally. This is the method used to determine the geometry for H 2 O. In the C 2 H 4 molecule, the shape around each carbon atom is triangular (or trigonal) planar. (The two bonding pairs in the double bond are not lined up between the two nuclei, but are spread out in space above and below the plane of the molecule). In describing molecular geometry we indicate the positions of the atomic nuclei, not the electrons.

The idea of a correlation between molecular geometry and number of valence electrons (both shared and unshared) was first presented in 1940 by Sidgwick and Powell. In 1957, R. J. Gillespie and R. S. Nyholm refined this concept to build a more detailed theory capable of choosing between various alternative geometries. This theory is known as the Valence Shell Electron Repulsion Theory (VSEPR). The VSEPR theory assumes 1. The electron pairs in the valence shell of a central atom repel each other. 2. The electron pairs occupy positions in space that minimize repulsions and maximize the distance of separation between them. (i.e., they are as far away from each other as possible) 3. The valence shell is treated as a sphere with electron pairs spread out on the spherical surface at maximum distance from one another. 4. A multiple bond is treated as if it is a single electron pair for determining the molecular geometry. There are some additional effects of the two or three electron pairs of a multiple bond on the actual bond angles. 5. Where two or more resonance structures can depict a molecule the VSEPR model is applicable to any such structure. Three types of repulsion take place between the electrons of a molecule: 1. The lone pair-lone pair repulsion 2. The lone pair-bonding pair repulsion 3. The bonding pair-bonding pair repulsion. The VSEPR shapes for compounds formed from Group 2 to Group 6 atoms are given in Table 1 In addition to the common VSEPR shapes for the Group 5 and Group 6 elements, these elements may form structures that violate the octet rule by having 5 or 6 bonds to the central atom. Some examples of these molecules are given in Table 2. It is also possible to predict polarity from Lewis structures. Polar molecules have their center of positive charge at a different point than their center of negative charge. This separation of charges produces a dipole moment in the molecule. Covalent bonds between different kinds of atoms are polar; all heteronuclear diatomic molecules are polar. In some symmetrical molecules the polarity from one bond may be canceled by that from others. Carbon dioxide, CO 2, which is linear, is a nonpolar molecule. Methane, CH 4, and carbon tetrachloride, CCl 4 which are tetrahedral, are also nonpolar. Non-symmetrial molecules such as CH 3 Cl will be polar. Molecules with nonbonded electron pairs on the central atom are usually polar. Although the conclusions we have drawn regarding molecular geometry and polarity can be determined from a combination of VSEPR shapes and Lewis structures, it is much easier to draw such conclusions by constructing models of molecules and ions. Models tend to be easier to construct than the drawings of Lewis structures on paper. In addition, the models are three-dimensional and are much more representative of the actual species. Using the models, it is relatively easy to see both geometry and polarity, as well as to deduce Lewis structures. In this experiment you will assemble models for a number of common chemical species and interpret them in the ways we have discussed.

Table 1. VSEPR shapes of molecules formed from Group 2 to Group 6 atoms Periodic Group Example No. of bonded electron pairs No. of nonbonded electron pairs Shape Other compounds with similar shapes Group 2A BeCl 2 2 0 linear Mg Cl 2 CaBr 2 SrI 2 BaCl 2 Group 3A BCl 3 3 0 AlCl 3 trigonal planar Group 4A CH 4 4 0 tetrahedral CCl 4 SiCl 4 SnBr 4 PbI 4 Group 5A NH 3 3 1 trigonal pyramid PCl 3 AsBr 3 SbI 3 Group 6A H 2 O 2 2 bent H 2 S H 2 Te

Table 2. VSEPR shapes of molecules formed from Group 5 and Group 6 atoms which violate the octet rule. Note: Only the main shapes are shown. Periodic Group Example No. of bonded electron pairs No. of nonbonded electron pairs Shape Other compounds with similar shapes Group 5A PCl 5 5 0 SbCl 5 AsI 5 trigonal bipyramid Group 6A SF 6 6 0 Te(OH) 6 octahedral Construction of Molecular Models Materials Needed Molecular model kit Safety There are no safety precautions needed for this experiment Disposal There are no disposal of materials in this experiment Experimental Procedure The models used in this experiment consist of pre-drilled wooden balls, two different length wood sticks, and springs. The balls represent atoms and the sticks and springs represent electron pairs or chemical bonds and fit in the holes in the wooden balls. Together, a model (molecule or ion) consists of wooden balls (atoms) connected by sticks or springs (chemical bonds). Some sticks may be connected to only one atom (nonbonding pairs). Although the wood balls may be used to represent a number of different atoms, common atoms are depicted by the colors as listed in Table 3.

Table 3. Molecular Models and Color Coding No. of Atom Color Valence Electrons Hydrogen Carbon Nitrogen Oxygen Chlorine Bromine Iodine Yellow or White Black Blue Red Green Orange or Brown Purple 1 4 5 6 7 7 7 In this experiment we will deal with atoms that obey the octet rule: such atoms have four electron pairs around the central core and will be represented by balls with four tetrahedral holes in which there are four sticks or springs. The only exception will be hydrogen atoms, which share two electrons in covalent compounds, and which are represented by balls with a single hole in which there is a single stick. In assembling a molecular model of the kind we are considering, we will proceed in a systematic manner. We will illustrate the recommended procedure by developing a model for a molecule with the formula CH 2 O. 1. Determine the total number of valence electrons in the species: The number of valence electrons on an atom is equal to the number of the group to which the atom belongs in the Periodic Table. For CH 2 O, C Group 4 H Group I O G r o u p 6 Therefore each carbon atom in a molecule or ion contributes four electrons, each hydrogen atom one electron, and each oxygen atom six electrons. The total number of valence electrons equals the sum of the valence electrons on all of the atoms in the species being studied. For CH 2 O this total would be 4 + (2 x 1) + 6, or 12 valence electrons. If we are working with an ion, we add one electron for each negative charge or subtract one electron for each positive charge on the ion. 2. Select wooden balls and sticks to represent the atoms and electron pairs in the molecule. You should use four-holed balls for the carbon atom and the oxygen atom, and one-holed balls to represent the hydrogen atoms. Since there are 12 valence electrons in the molecule and electrons occur in pairs, you will need six sticks to represent the six electron pairs. The sticks will serve both as bonds between atoms and as nonbonding electron pairs. 3. The central atom in the molecule is the one with the lowest electronegativity, that is, the one located farthest to the left on the periodic table. Look at the VSEPR structures in Table 1 to see the shape of bonds around the central atom.

4. Connect the balls with some of the sticks. (Assemble a skeleton structure for the molecule, joining atoms by single bonds.) In some cases this can only be done in one way. Usually, however, there may be more than one possibility, some of which are more reasonable than others. In CH 2 O, the model can be assembled by connecting the two H atom balls to the C atom ball with two of the available sticks, and then using a third stick to connect the C atom and O atom balls. 5. The next step is to use the sticks that are left over in such a way as to fill all the remaining holes in the balls. (Distribute the electron pairs so as to give each atom eight electrons and to satisfy the octet rule.) In the model we have assembled, there is one unfilled hole in the C atom ball, three unfilled holes in the O atom ball, and three available sticks. A way to meet the required condition is to use two sticks to fill two of the holes in the O atom ball and the open hole in carbon. To do this, you will need to use two springs instead of two sticks to connect the C atom and O atom balls. The model, as completed, is shown below: This model uses a blue wood ball to represent the oxygen atom. The two sticks represent nonbonded electron pairs This model uses a red ball to represent the oxygen atom. There are only two holes in the red ball, so the nonbonded electron pairs are not represented 6. Interpret the model in terms of the atoms and bonds represented. The sticks and spatial arrangement of the balls will closely correspond to the electronic and atomic arrangement in the molecule. Given our model, we would describe the CH 2 O molecule as being planar with single bonds between carbon and hydrogen atoms and a double bond between the C and O atoms. The H C H angle is approximately tetrahedral. There are two nonbonding electron pairs on the O atom. Since all bonds are polar and the molecular symmetry does not cancel the polarity in CH 2 O, the molecule is polar. The Lewis structure of the molecule is given below: This compound is called formaldehyde or methanal. 7. Investigate the possibility of the existence of isomers or resonance structures. It turns out that in the case of CH 2 O one can easily construct an isomeric form that obeys the octet rule, in which the central atom is oxygen rather than carbon. It is found that this isomeric form of CH 2 O does not exist in nature. As a general rule, carbon atoms almost always form a total of four bonds; put another way, nonbonding electron pairs on carbon atoms are very rare. Another useful rule of a similar nature is that if a species contains several atoms of one kind and one of another, the atoms of the same kind will assume equivalent positions in the species. In SO 4 2 -, for example, the four O atoms are all equivalent, and are bonded to the S atom and not to one another.

8. Resonance structures are reasonably common. For resonance to occur, however, the atomic arrangement must remain fixed for two or more possible electronic structures. For CH 2 O there are no resonance structures. Using the procedure outlined, construct and report on models of the molecules in the table on the following pages. Draw the complete Lewis structure for each molecule, showing nonbonding as well as bonding electrons. Given the structure, describe the geometry of the molecule or ion, and state whether the species is polar. Finally, draw the Lewis structures of any likely isomers or resonance forms.

Name Date Report: Structure of Molecules Using Molecular Models Molecule Lewis Structure (Draw the structure) Molecular Geometry: (Tell shape) Is this molecule polar? EXPLAIN Does this molecule have any isomers or resonance structures? If yes, draw them Methane CH 4 Dichloro methane CH 2 Cl 2 Nitrogen N 2 Oxygen O 2 Water H 2 O Hydronium ion H 3 O +

Molecule Lewis Structure (Draw the structure) Molecular Geometry: (Tell shape) Is this molecule polar? EXPLAIN Does this molecule have any isomers or resonance structures? If yes, draw them Hydrogen peroxide H 2 O 2 Carbon dioxide CO 2 Hydrofluoric acid HF Ammonia NH 3 Phosphorus P 4 Ethene C 2 H 4 1,2-dibromo ethane C 2 H 4 Br 2

Molecule Lewis Structure (Draw the structure) Molecular Geometry: (Tell shape) Is this molecule polar? EXPLAIN Does this molecule have any isomers or resonance structures? If yes, draw them Ethyne C 2 H 2 Sulfate ion SO 4 2- Thiocyanate ion SCN - Nitrate ion NO 3 - Nitric acid HNO 3 Carbon monoxide CO Sulfur dioxide SO 2

Molecule Lewis Structure (Draw the structure) Molecular Geometry: (Tell shape) Is this molecule polar? EXPLAIN Does this molecule have any isomers or resonance structures? If yes, draw them Sulfur trioxide SO 3 CH 4 O