Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory
|
|
|
- Earl Willis
- 9 years ago
- Views:
Transcription
1 Structures and Properties of Substances Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory
2 The VSEPR theory In 1957, the chemist Ronald Gillespie and Ronald Nyholm, developed a model for predicting the shape of molecules. This model is usually abbreviated to VSEPR (pronounced vesper ) theory: Valence Shell Electron Pair Repulsion The fundamental principle of the VSEPR theory is that the bonding pairs (BP) and lone pairs (LP) of electrons in the valence level of an atom repel one another. Thus, the orbital for each electron pair is positioned as far from the other orbitals as possible in order to achieve the lowest possible unstable structure. The effect of this positioning minimizes the forces of repulsion between electron pairs. A
3 The VSEPR theory The repulsion is greatest between lone pairs (LP-LP). Bonding pairs (BP) are more localized between the atomic nuclei, so they spread out less than lone pairs. Therefore, the BP-BP repulsions are smaller than the LP-LP repulsions. The repulsion between a bond pair and a lone-pair (BP-LP) is intermediate between the other two. In other words, in terms of decreasing repulsion: LP-LP > LP-BP > BP-BP The tetrahedral shape around a single-bonded carbon atom (e.g. in CH4), the planar shape around a carbon atom with two double bond (e.g. in CO2), and the bent shape around an oxygen atom in H2O result from repulsions between lone pairs and/or bonding pairs of electrons.
4 The VSEPR theory The repulsion is greatest between lone pairs (LP-LP). Bonding pairs (BP) are more localized between the atomic nuclei, so they spread out less than lone pairs. Therefore, the BP-BP repulsions are smaller than the LP-LP repulsions. The repulsion between a bond pair and a lone-pair (BP-LP) is intermediate between the other two. In other words, in terms of decreasing repulsion: LP-LP > LP-BP > BP-BP The tetrahedral shape around a single-bonded carbon atom (e.g. in CH4), the planar shape around a carbon atom with two double bond (e.g. in CO2), and the bent shape around an oxygen atom in H2O result from repulsions between lone pairs and/or bonding pairs of electrons.
5 Geometry of the molecules and the VSEPR theory The figure below shows the five basic geometrical arrangements that result from the interactions of lone pairs and bonding pairs around a central atom. These arrangements involve up to six electron groups. An electron group is usually one of the following: a single bond a double bond a triple bond a lone pair When all the electron groups are BP, a molecule will have one of those five geometrical arrangements. If one (or more) of the electron groups are LP, variations in the geometric arrangements result.
6 Geometry of the molecules Each of the molecules in the following pages below has four pairs of electrons around the central atom. Observe the differences in the number of bonding and lone pairs in these molecules. Methane, CH4, has 4 BP. Ammonia, NH3, has 3 BP and 1 LP. Water, H2O, has 2 BP and 2 LP. These differences have an effect on the shapes and bond angles of the molecules.
7 Geometry of the molecules Methane with four BP, has a tetrahedral molecular shape. The angle between any two bonding pairs in the tetrahedral electron-group arrangement is This angle corresponds to the most favorable arrangement of electron groups to minimize the forces of repulsion among them.
8 Geometry of the molecules Ammonia When there are 1 LP and 3 BP around a central atom, there are two types of repulsions: LP-BP and BP-BP Since LP-BP repulsions are greater than BP-BP repulsions, the bond angle between the bond pairs in NH3 is reduced from to When you draw the shape of a trigonal pyramidal molecule, without the lone pair, you can see that the three bonds form the shape of a pyramid with a triangular base
9 Geometry of the molecules Water In a molecule of H2O, there are two BP and two LP. The strong LP-LP repulsions, in addition to the LP-BP repulsions, cause the angle between the bonding pairs to be reduced further to The result is the bent shape around an oxygen atom with 2 LP and two single bonds
10 Common Molecular Shapes Table 4.2 Common Molecular Shapes and Their Electron Group Arrangements Number of electron groups Geometric arrangement of electron groups Type of electron pairs VSEPR notation Name of Molecular shape Example 2 3 linear trigonal planar 2 BP A 2 A BeF 2 linear 3 BP A 3 BF 3 A trigonal planar 3 trigonal planar 2 BP, 1 LP A 2 E SnCl 2 A angular 4 tetrahedral 4 BP A 4 CF 4 A tetrahedral 4 tetrahedral 3 BP, 1LP A 3 E PCl 3 A trigonal pyramidal 4 tetrahedral 2 BP, 2LP A 2 E 2 H 2 S A angular
11 tetrahedral Common Molecular Shapes 4 2 BP, 2LP A 2 E 2 H 2 S A Table 4.2 Common Molecular Shapes and Their Electron Group Arrangements Number of Geometric arrangement Type of electron groups of electron groups electron pairs VSEPR notation Name of Molecular angular shape Example 25 linear trigonal 25 BP A 25 A BeF SbCl 25 bipyramidal linear 3 trigonal planar 3 BP A 3 A BF 3 A trigonal planar trigonal bipyramidal 3 trigonal planar 2 BP, 1 LP A 2 E SnCl 2 5 trigonal 4 BP, 1LP A 4 E TeCl 4 bipyramidal A A angular 4 tetrahedral 4 BP A 4 CF 4 seesaw A 5 trigonal 3 BP, 2LP A 3 E 2 BrF 3 bipyramidal 182 MHR Unit 2 Structure and Properties A tetrahedral 4 tetrahedral 3 BP, 1LP A 3 E T-shaped PCl 3 5 trigonal bipyramidal 2 BP, 3LP A 2 E 3 A ef 2 trigonal linear pyramidal 4 tetrahedral 2 BP, 2LP A 2 E 2 H 2 S 6 octahedral 6 BP A 6 SF 6 A A A angular
12 Predicting Molecular Shape It is possible to use the steps below to predict the shape of a molecule (or polyatomic ion) that has one central atom. 1.Draw a preliminary Lewis structure of the molecule based on the formula given. 2.Determine the total number of electron groups around the central atom (bonding pairs, lone pairs and, where applicable, account for the charge on the ion). Remember that a double bond or a triple bond is counted as one electron group. 3.Determine which one of the five geometric arrangements will accommodate this total number of electron groups. 4.Determine the molecular shape from the positions occupied by the bonding pairs and lone pairs.
13 Sample Problem Problem Sample Determine the molecular shape of the hydronium ion, H 3 O +. Determine the molecular shape of the hydronium ion, H3O Plan Your Strategy + 1.Plan Your Strategy Follow the four-step procedure that helps to predict molecular shape. Follow the four-step Use procedure Table 4.2 for that names helps of to the predict electron-group molecular arrangements shape. Use the and Common molecular shapes. molecular shapes table on the previous pages for names of the electron-group arrangements and molecular shapes. Act on Your Strategy 2.Act on Your Strategy Step 1: A possible Step Lewis 1 A structure possible for Lewis H3O structure + is: for H 3 O + is: H + H O H Step 2: The Lewis structure Step 2 The shows Lewis 3 structure BPs and shows 1 LP. That 3 BPs is, there and 1 are LP. That a total is, of there four are a electron groups around the central O atom. total of four electron groups around the central O atom. Step 3: The geometric arrangement of the electron groups is tetrahedral. Step 4: For 3 BP and Step 13 LP, The the geometric molecular arrangement shape is trigonal of the pyramidal. electron groups is tetrahedral. Step 4 For 3 BPs and 1 LP, the molecular shape is trigonal pyramidal. This molecular shape corresponds to the VSEPR notation for this ion, A3E. Check Your Solution This molecular shape corresponds to the VSEPR notation for this ion, A 3 E.
14 Practice Problem Use VSEPR theory to predict the molecular shape for each of the following: (a) HCN (b) SO2 (c) SO3 (d) SO4 2- Use VSEPR theory to predict the molecular shape for each of the following: (a) CH2F2 (b) NH4 + (c) BF4 - Use VSEPR theory to predict the molecular shapes of NO2 + and NO2 -.
4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions
Molecular Shape and Polarity 4.2 molecule is a discrete chemical entity, in which atoms are held together by the electrostatic attractions of covalent bonds. In previous chemistry courses, you used Lewis
Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory
Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron
VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry
VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion
EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory
EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,
Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure
Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular
Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion
Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion A covalent bond is a bond formed due to a sharing of electrons. Lewis structures provide a description
Molecular Geometry and Chemical Bonding Theory
Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four
Chapter 10 Molecular Geometry and Chemical Bonding Theory
Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular
Covalent Bonding and Molecular Geometry
Name Section # Date of Experiment Covalent Bonding and Molecular Geometry When atoms combine to form molecules (this also includes complex ions) by forming covalent bonds, the relative positions of the
CH101/105, GENERAL CHEMISTRY LABORATORY
CH101/105, GENERAL CHEMITRY LABORATORY LABORATORY LECTURE 5 EXPERIMENT 5: LEWI TRUCTURE AND MOLECULAR HAPE Lecture topics I. LEWI TRUCTURE a) calculation of the valence electron numbers; b) choosing the
7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120
APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry
5. Which of the following is the correct Lewis structure for SOCl 2
Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which
Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5
Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral
ACE PRACTICE TEST Chapter 8, Quiz 3
ACE PRACTICE TEST Chapter 8, Quiz 3 1. Using bond energies, calculate the heat in kj for the following reaction: CH 4 + 4 F 2 CF 4 + 4 HF. Use the following bond energies: CH = 414 kj/mol, F 2 = 155 kj/mol,
EXPERIMENT 9 Dot Structures and Geometries of Molecules
EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published
Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.
Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions
C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.
129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element
Theme 3: Bonding and Molecular Structure. (Chapter 8)
Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,
Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds
Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds
ch9 and 10 practice test
1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp
Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)
(Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons
Laboratory 11: Molecular Compounds and Lewis Structures
Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular
Molecular Structure and Polarity
OpenStax-CNX module: m51053 1 Molecular Structure and Polarity OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this
Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity
hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar
Geometries and Valence Bond Theory Worksheet
Geometries and Valence Bond Theory Worksheet Also do Chapter 10 textbook problems: 33, 35, 47, 49, 51, 55, 57, 61, 63, 67, 83, 87. 1. Fill in the tables below for each of the species shown. a) CCl 2 2
Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding
Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding
Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.
Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of
CHAPTER 10 THE SHAPES OF MOLECULES
ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium
Molecular Geometry and Hybrid Orbitals. Molecular Geometry
Molecular Geometry and ybrid Orbitals + -- bond angle 90 o Molecular Geometry Why Should I are bout Molecular Geometry? Molecular geometry (shape) influences... 3 Physical properties: 3 3 3 3 3 Pentane
Chemistry 105, Chapter 7 Exercises
hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2
CHAPTER 10 THE SHAPES OF MOLECULES
ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.
Ionic and Covalent Bonds
Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation
SHAPES OF MOLECULES (VSEPR MODEL)
1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple
2. Atoms with very similar electronegativity values are expected to form
AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result
Chemistry Workbook 2: Problems For Exam 2
Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.
POLARITY AND MOLECULAR SHAPE WITH HYPERCHEM LITE
POLARITY AND MOLECULAR SHAPE WITH HYPERCHEM LITE LAB MOD4.COMP From Gannon University SIM INTRODUCTION Many physical properties of matter, such as boiling point and melting point, are the result of the
Chapter 9 - Covalent Bonding: Orbitals
Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new
SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O
SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.
CHEMISTRY BONDING REVIEW
Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.
Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry
Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry Name 1) Which pair of elements is most apt to form a molecular compound with each other? A) aluminum, oxygen B) magnesium, iodine
CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.
CEM 1301 SECOND TEST REVIEW Lewis Structures Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. Rules OCTET RULE an atom would like to have 8
Self Assessment_Ochem I
UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.
We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules.
Chapter 10 Bonding: Lewis electron dot structures and more Bonding is the essence of chemistry! Not just physics! Chemical bonds are the forces that hold atoms together in molecules, in ionic compounds,
A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.
CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the
Valence Bond Theory: Hybridization
Exercise 13 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Valence Bond Theory: ybridization Name: Objectives To illustrate the distribution of electrons and rearrangement of orbitals
Exercises Topic 2: Molecules
hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry
: : Solutions to Additional Bonding Problems
Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy
Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O..
John W. Moore onrad L. Stanitski Peter. Jurs http://academic.cengage.com/chemistry/moore hapter 9 Molecular Structures Stephen. oster Mississippi State University Molecular Structures 2 6 structural isomers:
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy
CHAPTER 10 THE SHAPES OF MOLECULES
ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium
Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories
CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.
Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence
A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)
Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is
5. Structure, Geometry, and Polarity of Molecules
5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those
CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)
CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space
CHAPTER 12: CHEMICAL BONDING
CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist
Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces
onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional
Molecular Geometry and Bonding Theories
9 Molecular Geometry and Bonding Theories We saw in hapter 8 that Lewis structures help us understand the compositions of molecules and their covalent bonds. owever, Lewis structures do not show one of
A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES
A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular
Molecular Geometry & Polarity
Name AP Chemistry Molecular Geometry & Polarity Molecular Geometry A key to understanding the wide range of physical and chemical properties of substances is recognizing that atoms combine with other atoms
The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.
CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A
1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.
pre -TEST Big Idea 2 Chapters 8, 9, 10
Name: AP Chemistry Period: Date: R.F. Mandes, PhD, NBCT Complete each table with the appropriate information. Compound IMF Compound IMF 1 NiCl 3 7 ClCH 2 (CH 2 ) 3 CH 3 2 Fe 8 H 2 CF 2 3 Ar 9 H 2 NCH 2
Unit 3: Quantum Theory, Periodicity and Chemical Bonding
Selected Honour Chemistry Assignment Answers pg. 9 Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 7: The Electronic Structure of Atoms (pg. 240 to 241) 48. The shape of an s-orbital is
Polarity. Andy Schweitzer
Polarity Andy Schweitzer What does it mean to be polar? A molecule is polar if it contains + and somewhere in the molecule. Remember: Protons can not move. So for a molecule to get a +/- it must somehow
CHAPTER 6 Chemical Bonding
CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain
CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)
CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum
Exam. Name. 1) Chlorine (atomic number = 17) has the electronic configuration:. E) 1s22s22d103s2
Exam Name 1) Chlorine (atomic number = 17) has the electronic configuration:. A) 1s22s22p62d63s1 B) 1s22s22p63s23d5 C) 1s22s22p62d53s2 D) 1s22s22p63s23p5 E) 1s22s22d103s2 2) The complete electron configuration
Ionic Bonds. Chapter 8 Chemical Bonds (+VSEPR from Chapter 9) Li Be B C N O F Ne delocalized electron sea. 3. Introduction. Types of Chemical Bonds
hapter 8: hemical Bonds (+ VSEPR) hapter bjectives: hapter 8 hemical Bonds (+VSEPR from hapter 9) Understand the principal types of chemical bonds. Understand the properties of ionic and molecular compounds.
Hybrid Molecular Orbitals
Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule
CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK
CHEM 340 CHEMICAL BONDING in General Lect07 BONDING between atoms classified as belonging to one of the following types: IONIC COVALENT METAL COVALENT NETWORK or each bond type, the valence shell electrons
Chapter 8: Covalent Bonding and Molecular Structure
hapter 8 ovalent Bonding and Molecular Structure 8-1 hapter 8: ovalent Bonding and Molecular Structure hapter 8 8.1 Interactions Between Particles: oulomb s Law 8.2 ovalent Bonding Basics 8.3 Lewis Structures
Chemical Bonding. Chemical Bonding
ocaine EMIAL BDIG 1 hemical Bonding Problems and questions ow is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? an we predict the structure?
CHEM 101 Exam 4. Page 1
CEM 101 Exam 4 Form 1 (White) November 30, 2001 Page 1 Section This exam consists of 8 pages. When the exam begins make sure you have one of each. Print your name at the top of each page now. Show your
CHEMISTRY 113 EXAM 4(A)
Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)
Experiment 13 Molecular Models on a Computer
Experiment 13 Models on a Computer PRE-LABORATORY QUESTIONS The following preparatory questions should be answered before coming to laboratory. They are intended to introduce you to several ideas that
MOLECULAR GEOMETRY AND BONDING THEORIES
u MOLECULAR GEOMETRY AND BONDNG TEORES TE ANTCANCER DRUG TAXOL was originally isolated from the bark of the Pacific yew tree. Chemists have now learned how to synthesize this important pharmaceutical in
OCTET RULE Generally atoms prefer electron configurations with 8 valence electrons. - Filled s and p subshells
TYPES EMIAL BDIG 1 Ionic Bonding - Bond between ions whose charges attract each other - ne atom gives electrons and one atom takes electrons. Example a + l - ionic bond ovalent Bonding - two atoms each
NAME PER DATE DUE ACTIVE LEARNING IN CHEMISTRY EDUCATION "ALICE" CHAPTER 15 CHEMICAL BONDING (PART 2) 15-1 1997, A.J. Girondi
NAME PER DATE DUE ACTIVE LEARNING IN CEMISTRY EDUCATION "ALICE" CAPTER 15 CEMICAL BONDING (PART 2) 15-1 1997, A.J. Girondi NOTICE OF RIGTS All rights reserved. No part of this document may be reproduced
1.3 STRUCTURES OF COVALENT COMPOUNDS
1.3 STRUTURES OF OVALENT OMPOUNDS 13 1.9 Draw an appropriate bond dipole for the carbon magnesium bond of dimethylmagnesium. Explain your reasoning. 3 Mg 3 dimethylmagnesium 1.3 STRUTURES OF OVALENT OMPOUNDS
7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8
HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how
Where Is My Lone Pair?
Where Is My Lone Pair? Goal: In this tutorial we'll learn how to determine which orbital contains a lone pair. This is important for resonance, conjugation, and aromaticity. To master this subject you'll
Chapter 2 Polar Covalent Bonds; Acids and Bases
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity
Chapter 5 Chemical Compounds
Chapter 5 59 Chapter 5 Chemical Compounds Review Skills 5.1 Classification of Matter 5.2 Compounds and Chemical Bonds Equal and Unequal Sharing of Electrons Transfer of Electrons Summary of Covalent and
Chemistry 151 Final Exam
Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must
CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH
1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides
Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.
hem 150 Answer Key roblem et 2 1. omplete the following phrases: Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.
Molecular Orbital Theory
Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and
Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make
AP CHEMISTRY 2007 SCORING GUIDELINES. Question 6
AP CHEMISTRY 2007 SCORING GUIDELINES Question 6 Answer the following questions, which pertain to binary compounds. (a) In the box provided below, draw a complete Lewis electron-dot diagram for the IF 3
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three
Chemistry CA 2 Practice
hemistry 2 Practice Some questions (c) 2015 by Region 10 Educational Service enter. Some questions (c) 2015 by Progress Testing. Page 2 1 Which of the following is the mass in grams of 4.25 10³ mol of
1.15 Bonding in Methane and Orbital Hybridization
1.15 Bonding in Methane and Orbital Hybridization Structure of Methane tetrahedral bond angles = 109.5 bond distances = 110 pm but structure seems inconsistent with electron configuration of carbon Electron
(a) What is the hybridization at each carbon atom in the molecule? (b) How many σ and how many π bonds are there in the molecule?
Read Chapter 9 and complete the following problems: 1. Figure 9.15 is listed on page 361 of the textbook and shows the potential energy of two hydrogen atoms as a function of the distance between them.
Chapter 2 The Chemical Context of Life
Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living
Chapter 2 Polar Covalent Bonds: Acids and Bases
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical
123.202: Organic and Biological Chemistry Tutorial Answers for gjr s Section Sheet 1
123.202: rganic and Biological hemistry Tutorial Answers for gjr s ection heet 1 Question 1. Draw the Lewis structures (dot & cross diagrams) for the following UR molecules: l 2, Pl 3, 3 (Me) 2 & 3 l 2
AP* Bonding & Molecular Structure Free Response Questions page 1
AP* Bonding & Molecular Structure ree Response Questions page 1 (1) AP is a registered trademark of the ollege Board. The ollege Board was not involved in the production of and does not endorse this product.
