LINEAR INEQUALITIES. Chapter Overview

Similar documents
LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR EQUATIONS IN TWO VARIABLES

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Answer Key for California State Standards: Algebra I

MATH 60 NOTEBOOK CERTIFICATIONS

Learning Objectives for Section 1.1 Linear Equations and Inequalities

What are the place values to the left of the decimal point and their associated powers of ten?

Florida Math Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Systems of Linear Equations in Three Variables

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

EQUATIONS and INEQUALITIES

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

Algebra Cheat Sheets

To Evaluate an Algebraic Expression

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, , , 4-9

Understanding Basic Calculus

ACCUPLACER Arithmetic & Elementary Algebra Study Guide

Section 1. Inequalities

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

7.2 Quadratic Equations

Florida Math Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

THREE DIMENSIONAL GEOMETRY

Linear Equations and Inequalities

Algebra I. In this technological age, mathematics is more important than ever. When students

1.1 Practice Worksheet

Higher Education Math Placement

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

MATHS LEVEL DESCRIPTORS

Charlesworth School Year Group Maths Targets

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Chapter 9. Systems of Linear Equations

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Mathematics. Mathematical Practices

Tennessee Mathematics Standards Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Algebra 1 End-of-Course Exam Practice Test with Solutions

Solving Quadratic Equations by Factoring

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i.

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

CONTENTS. Please note:

0.4 FACTORING POLYNOMIALS

Warm-Up What is the least common multiple of 6, 8 and 10?

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Grade 6 Mathematics Performance Level Descriptors

Properties of Real Numbers

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

How To Understand Algebraic Equations

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

7 Literal Equations and

Absolute Value Equations and Inequalities

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

COMPETENCY TEST SAMPLE TEST. A scientific, non-graphing calculator is required for this test. C = pd or. A = pr 2. A = 1 2 bh

Systems of Linear Equations and Inequalities

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

IV. ALGEBRAIC CONCEPTS

FOREWORD. Executive Secretary

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Number Sense and Operations

Review of Basic Algebraic Concepts

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

MATH 21. College Algebra 1 Lecture Notes

SOLVING POLYNOMIAL EQUATIONS

Study Guide 2 Solutions MATH 111

Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER

National 5 Mathematics Course Assessment Specification (C747 75)

Sect Solving Equations Using the Zero Product Rule

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

Worksheet to Review Vector and Scalar Properties

Determine If An Equation Represents a Function

Volumes of Revolution

3.1 Solving Systems Using Tables and Graphs

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i i 5 6i

Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Click on the links below to jump directly to the relevant section

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

Algebra I Teacher Notes Expressions, Equations, and Formulas Review

BEGINNING ALGEBRA ACKNOWLEDMENTS

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

Primary Curriculum 2014

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

CAHSEE on Target UC Davis, School and University Partnerships

Vocabulary Cards and Word Walls Revised: June 29, 2011

SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

Section 1: How will you be tested? This section will give you information about the different types of examination papers that are available.

How To Solve Factoring Problems

McDougal Littell California:

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. 1. Factor x 2-5x Factor x 2-4x - 5.

A Detailed Price Discrimination Example

Transcription:

Chapter 6 LINEAR INEQUALITIES 6.1 Overview 6.1.1 A statement involving the symbols >, <,, is called an inequality. For example 5 > 3, x 4, x + y 9. (i) Inequalities which do not involve variables are called numerical inequalities. For example 3 < 8, 5. (ii) (iii) (iv) (v) Inequalities which involve variables are called literal inequalities. For example, x > 3, y 5, x y 0. An inequality may contain more than one variable and it can be linear, quadratic or cubic etc. For eaxmple, 3x < 0 is a linear inequality in one variable, x + 3y 4 is a linear inequality in two variables and x + 3x + < 0 is a quadratic inequality in one variable. Inequalities involving the symbol > or < are called strict inequalities. For example, 3x y > 5, x < 3. Inequalities involving the symbol or are called slack inequalities. For example, 3x y 5, x 5. 6.1. Solution of an inequality (i) The value(s) of the variable(s) which makes the inequality a true statement is called its solutions. The set of all solutions of an inequality is called the solution set of the inequality. For example, x 1 0, has infinite number of solutions as all real values greater than or equal to one make it a true statement. The inequality x + 1 < 0 has no solution in R as no real value of x makes it a true statement. To solve an inequality we can (i) Add (or subtract) the same quantity to (from) both sides without changing the sign of inequality. (ii) Multiply (or divide) both sides by the same positive quantity without changing the sign of inequality. However, if both sides of inequality are multiplied (or divided) by the same negative quantity the sign of inequality is reversed, i.e., > changes into < and vice versa.

LINEAR INEQUALITIES 99 6.1.3 Representation of solution of linear inequality in one variable on a number line To represent the solution of a linear inequality in one variable on a number line, we use the following conventions: (i) If the inequality involves or, we draw filled circle ( ) on the number line to indicate that the number corresponding to the filled circle is included in the solution set. (ii) If the inequality involves > or <, we draw an open circle (O) on the number line to indicate that the number corresponding to the open circle is excluded from the solution set. 6.1.4 Graphical representation of the solution of a linear inequality (a) (b) (c) To represent the solution of a linear inequality in one or two variables graphically in a plane, we proceed as follows: (i) If the inequality involves or, we draw the graph of the line as a thick line to indicate that the points on this line are included in the solution set. (ii) If the inequality involves > or <, we draw the graph of the line as dotted line to indicate that the points on the line are excluded from the solution set. Solution of a linear inequality in one variable can be represented on number line as well as in the plane but the solution of a linear inequality in two variables of the type ax + by > c, ax + by c, ax + by < c or ax + by c (a 0, b 0) can be represented in the plane only. Two or more inequalities taken together comprise a system of inequalities and the solutions of the system of inequalities are the solutions common to all the inequalities comprising the system. 6.1.5 Two important results (a) (b) If a, b R and b 0, then (i) ab > 0 or a > 0 a and b are of the same sign. b a (ii) ab < 0 or < 0 a and b are of opposite sign. b If a is any positive real number, i.e., a > 0, then (i) x < a a < x < a x a a x a (ii) x > a x < a or x > a x a x a or x a

100 EXEMPLAR PROBLEMS MATHEMATICS 6. Solved Examples Short Answer Type Example 1 Solve the inequality, 3x 5 < x + 7, when (i) x is a natural number (ii) x is a whole number (iii) x is an integer (iv) x is a real number Solution We have 3x 5 < x + 7 3x < x + 1 (Adding 5 to both sides) x < 1 (Subtracting x from both sides) x < 6 (Dividing by on both sides) (i) Solution set is {1,, 3, 4, 5} (ii) Solution set is {0, 1,, 3, 4, 5} (iii) Solution set is {... 3,, 1, 0, 1,, 3, 4, 5} (iv) Solution set is {x : x R and x < 6}, i.e., any real number less than 6. x Example Solve x 5 x Solution We have x 5 x x 5 ( x 1) x 5 x 1 x 5 [Subtracting from each side] (Multiplying both sides by 1) x + 1 > 0 and x + 5 < 0 [Since a < 0 a and b are of opposite signs] b or x + 1 < 0 and x + 5 > 0 x > 1 and x < 5 or x < 1 and x > 5 (Not possible) Therefore, 1 < x < 5, i.e. x ( 1, 5)

LINEAR INEQUALITIES 101 Example 3 Solve 3 4x 9. Solution We have 3 4x 9. 3 4x 9 or 3 4x 9 (Since x a x a or x a) 4x 1 or 4x 6 x 3 or x 3 3 x (, ] 3, Example 4 Solve 1 x 3. Solution We have 1 x 3 x 1 and x 3 (Dividing both sides by 4) (x 1 or x 1) and ( 3 x 3) (x 1 or x 3) and ( 1 x 5) x (, 1] [3, ) and x [ 1, 5] Combining the solutions of two inequalities, we have x [ 1, 1] [3, 5] Example 5 The cost and revenue functions of a product are given by C(x) = 0 x + 4000 and R(x) = 60x + 000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? Solution We have, profit = Revenue Cost = (60x + 000) (0x + 4000) =40x 000 To earn some profit, 40x 000 > 0 x > 50 Hence, the manufacturer must sell more than 50 items to realise some profit. Example 6 Solve for x, x 1 x 3. Solution On LHS of the given inequality, we have two terms both containing modulus. By equating the expression within the modulus to zero, we get x = 1, 0 as critical points. These critical points divide the real line in three parts as (, 1), [ 1, 0), [0, ).

10 EXEMPLAR PROBLEMS MATHEMATICS Case I When < x < 1 x 1 x 3 x 1 x > 3 x <. Case II When 1 x < 0, x 1 x 3 x + 1 x > 3 1 > 3 (not possible) Case III When 0 x <, x 1 x 3 x + 1 + x > 3 x > 1. Combining the results of cases (I), (II) and (III), we get x (, ) (1, ) Long Answer Type Example 7 Solve for x, x 3 x x 1 x 3 x Solution We have 1 x x 3 x 1 0 x x 3 x Now two cases arise: Case I When x + 3 0, i.e., x 3. Then x 3 x x 3 x x 1 x {(x + 1) > 0 and x + > 0} or {x + 1 < 0 and x + < 0} {x > 1 and x > } or {x < 1 and x < } x > 1 or x < x ( 1, ) or x (, ) x ( 3, ) ( 1, ) [Since x 3]... (1)

LINEAR INEQUALITIES 103 Case II When x + 3 < 0, i.e., x < 3 x 3 x 3 x x ( x 5) x 5 x x (x + 5 < 0 and x + > 0) or (x + 5 > 0 and x + < 0) (x < 5 and x > ) or (x > 5 and x < ) it is not possible. x ( 5, )... () Combining (I) and (II), the required solution is x ( 5, ) ( 1, ) Example 8 Solve the following system of inequalities : x 1 6x 1, x 1 4 4x 1 x 1 Solution From the first inequality, we have 0 x 1 4 x 1 x 1 (x 1 0 and x + 1 > 0) or (x 1 0 and x + 1 < 0) [Since x + 1 0) (x 1 and x > 1 ) or (x 1 and x < 1 ) x 1 or x < 1 x (, 1 ) [ 1, )... (1) 6x 1 From the second inequality, we have 4x 1 8x 1 4 x 1 (8x + 1 < 0 and 4x 1 > 0) or (8x + 1 > 0 and 4x 1 < 0) 1 (x < and x > 1 8 4 ) or (x > 1 and x < 1 8 4 ) 1 x (, 1 ) 8 4 (Since the first is not possible)... ()

104 EXEMPLAR PROBLEMS MATHEMATICS Note that the common solution of (1) and () is null set. Hence, the given system of inequalities has no solution. Example 9 Find the linear inequalities for which the shaded region in the given figure is the solution set. Solution (i) Consider x + 3y = 3. We observe that the shaded region and the origin lie on opposite side of this line and (0, 0) satisfies x + 3y 3. Therefore, we must have x + 3y 3 as linear inequality corresponding to the line x + 3y = 3. (ii) (iii) Consider 3x + 4y = 18. We observe that the shaded region and the origin lie on the same side of this line and (0, 0) satisfies 3x + 4y 18. Therefore, 3x + 4y 18 is the linear inequality corresponding to the line 3x + 4y = 18. Consider 7x + 4y = 14. It is clear from the figure that the shaded region and the origin lie on the same side of this line and (0, 0) satisfies the inequality 7x + 4y 14. Therefore, 7x + 4y 14 is the inequality corresponding to the line 7x + 4y = 14. (iv) Consider x 6y = 3. It may be noted that the shaded portion and origin lie on the same side of this line and (0, 0) satisfies x 6y 3. Therefore, x 6y 3 is the inequality corresponding to the line x 6y = 3. (v) Also the shaded region lies in the first quadrant only. Therefore, x 0, y 0. Hence, in view of (i), (ii), (iii), (iv) and (v) above, the linear inequalities corresponding to the given solution set are : x + 3y 3,3x + 4y 18 7x + 4y 14, x 6y 3, x 0, y 0. Objective Type Fig 6.1 Choose the correct answer from the given four options against each of the Examples 10 to 13 (M.C.Q.) x Example 10 If, then x (A) x [, ) (B) x (, ) (C) x (, ) (D) x (, ]

LINEAR INEQUALITIES 105 Solution (B) is the correct choice. Since x x, for x 0, and x 0. Example 11 The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then (A) breadth > 0 cm (B) length < 0 cm (C) breadth x 0 cm (D) length 0 cm Solution (C) is the correct choice. If x cm is the breadth, then (3x + x) 160 x 0 Example 1 Solutions of the inequalities comprising a system in variable x are represented on number lines as given below, then Fig 6. (A) x (, 4] [3, ) (B) x [ 3, 1] (C) x (, 4) [3, ) (D) x [ 4, 3] Solution (A) is the correct choice Common solution of the inequalities is from to 4 and 3 to. Example 13 If x 3 10, then (A) x ( 13, 7] (B) x ( 13, 7] (C) x (, 13] [7, ) (D) x [, 13] [7, ) Solution (D) is the correct choice, since x 3 10, x + 3 10 or x + 3 10 x 13 or x 7 x (, 13] [7, ) Example 14 State whether the following statements are True or False. (i) If x > y and b < 0, then bx < by (ii) If xy > 0, then x > 0, and y < 0 (iii) If xy < 0, then x > 0, and y > 0 (iv) If x > 5 and x >, then x (5, ) (v) If x < 5, then x ( 5, 5) (vi) Graph of x > is (vii) Solution set of x y 0 is Fig 6.3

106 EXEMPLAR PROBLEMS MATHEMATICS Solution (i) True, because the sign of inequality is reversed when we multiply both sides of an inequality by a negative quantity. (ii) False, product of two numbers is positive if they have the same sign. (iii) False, product of two numbers is negative if they have opposite signs. (iv) True Fig 6.4 (v) True if x < 5 5 < x < 5 x ( 5, 5). (vi) False, because for x >, the line x = has to be dotted, i.e., the region does not include the points on the line x = (vii) False, because (1, 0) does not satisfy the given inequality and it is a point in shaded portion. Example 15 Fill in the blanks in the following: (i) If x 3, then x + 5... (ii) If x 4, then x... 8 (iii) 1 If < 0, then x... x a b (iv) If a < b and c < 0, then... c c (v) If x 1, then 1... x... 3 (vi) If 3x 7 >, then x... 5 3 or x...3 (vii) If p > 0 and q < 0, then p + q... p Solution (i) ( ), because same number can be added to both sides of inequality without changing the sign of inequality. (ii) ( ), after multiplying both sides by, the sign of inequality is reversed. (iii) (<), because if a < 0 and a > 0, then b < 0. b (iv) (>), if both sides are divided by the same negative quantity, then the sign of inequality is reversed.

LINEAR INEQUALITIES 107 (v) (, ), x 1 x 1 1 x 3. (vi) (<, > ), 3x 7 > 3x 7 < or 3x 7 > x < 5 3 or x > 3 (vii) (<), as p is positive and q is negative, therefore, p + q is always smaller than p. 6.3 EXERCISE Short Answer Type Solve for x, the inequalities in Exercises 1 to 1. 1. 4 6 3 x 1 x 1 x 1 1 1 3. x x 3 4. x 1 5, x 5. 5 3 x 9 4 6. 4x + 3 x + 17, 3x 5 <. 7. A company manufactures cassettes. Its cost and revenue functions are C(x) = 6,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit? 8. The water acidity in a pool is considerd normal when the average ph reading of three daily measurements is between 8. and 8.5. If the first two ph readings are 8.48 and 8.35, find the range of ph value for the third reading that will result in the acidity level being normal. 9. A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added? 10. A solution is to be kept between 40 C and 45 C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = 9 5 C + 3? 11. The longest side of a triangle is twice the shortest side and the third side is cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side. 1. In drilling world s deepest hole it was found that the temperature T in degree celcius, x km below the earth s surface was given by T = 30 + 5 (x 3), 3 x 15. At what depth will the temperature be between 155 C and 05 C?

108 EXEMPLAR PROBLEMS MATHEMATICS Long Answer Type 13. Solve the following system of inequalities x 1 5, 7x 1 x 7 x 8 14. Find the linear inequalities for which the shaded region in the given figure is the solution set. Fig 6.5 15. Find the linear inequalities for which the shaded region in the given figure is the solution set. Fig 6.6 16. Show that the following system of linear inequalities has no solution x + y 3, 3x + 4y 1, x 0, y 1

LINEAR INEQUALITIES 109 17. Solve the following system of linear inequalities: 3x + y 4, 3x + y 15, x 4 18. Show that the solution set of the following system of linear inequalities is an unbounded region x + y 8, x + y 10, x 0, y 0 Objective Type Question Choose the correct answer from the given four options in each of the Exercises 19 to 6 (M.C.Q.). 19. If x < 5, then (A) x < 5 (B) x 5 (C) x > 5 (D) x 5 0. Given that x, y and b are real numbers and x < y, b < 0, then (A) x b < y x (B) b b y b (C) x b > y x (D) b b y b 1. If 3x + 17 < 13, then (A) x (10, ) (B) x [10, ) (C) x (, 10] (D) x [ 10, 10). If x is a real number and x < 3, then (A) x 3 (B) 3 < x < 3 (C) x 3 (D) 3 x 3 3. x and b are real numbers. If b > 0 and x > b, then (A) x ( b, ) (B) x [, b) (C) x ( b, b) (D) x (, b) (b, ) 4. If x 1 > 5, then (A) x ( 4, 6) (B) x [ 4, 6] (C) x [, 4) (6, ) (D) x [, 4) [6, ) 5. If x 9, then (A) x ( 7, 11) (B) x [ 11, 7] (C) x (, 7) (11, ) (D) x (, 7) [11, )

110 EXEMPLAR PROBLEMS MATHEMATICS 6. The inequality representing the following graph is: Fig 6.7 (A) x < 5 (B) x 5 (C) x > 5 (D) x 5 Solution of a linear inequality in variable x is represented on number line in Exercises 7 to 30. Choose the correct answer from the given four options in each of the exercises (M.C.Q.). 7. (A) x (, 5) (B) x (, 5] (C) x [5,,) (D) x (5, ) 8. (A) x ( 9, ) Fig 6.8 (B) x [ 9, ) (D) x [, 9 ) (D) x (, 9 ] 9 Fig 6.9 9. (A) x (, 7 ) (B) x (, 7 ] (C) x [ 7, ) (D) x ( 7, ) 7 Fig 6.10 30. (A) x (, ) (B) x (, ] (C) x (, ] (D) x [, ) Fig 6.11

LINEAR INEQUALITIES 111 31. State which of the following statements is True or False (i) If x < y and b < 0, then x y. b b (ii) If xy > 0, then x > 0 and y < 0 (iii) If xy > 0, then x < 0 and y < 0 (iv) If xy < 0, then x < 0 and y < 0 (v) If x < 5 and x <, then x (, 5) (vi) If x < 5 and x >, then x ( 5, ) (vii) If x > and x < 9, then x (, 9) (viii) If x > 5, then x (, 5) [5, ) (ix) If x 4, then x [ 4, 4] (x) Graph of x < 3 is (xi) Graph of x 0 is Fig 6.1 Fig 6.13

11 EXEMPLAR PROBLEMS MATHEMATICS (xii) Graph of y 0 is (xiii) Fig 6.14 Solution set of x 0 and y 0 is (xiv) Fig 6.15 Solution set of x 0 and y 1 is Fig 6.16

LINEAR INEQUALITIES 113 (xv) Solution set of x + y 0 is 3. Fill in the blanks of the following: Fig 6.17 (i) If 4x 1, then x... 3. (ii) 3 If x 3, then x... 4. 4 (iii) If x > 0, then x.... (iv) If x > 5, then 4x... 0. (v) If x > y and z < 0, then xz... yz. (vi) If p > 0 and q < 0, then p q... p. (vii) If x > 5, then x... 7 or x... 3. (viii) If x + 1 9, then x... 4.