Dassault Systèmes Ι SGL Michigan RUM, October 12, Topology and Shape Optimization with Abaqus

Similar documents
Laminar Flow in a Baffled Stirred Mixer

Neue Entwicklungen in LS-OPT/Topology - Ausblick auf Version 2

Heat Transfer and Thermal-Stress Analysis with Abaqus

PARAMETRIC MODELING. David Rosen. December By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,

Finite Element Method (ENGC 6321) Syllabus. Second Semester

Introduction to ANSYS

Linear Dynamics with Abaqus

ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

Shell Elements in ABAQUS/Explicit

An Overview of the Finite Element Analysis

Autodesk Fusion 360: Assemblies. Overview

AutoCAD 3D. MicroStation. Courseware Issued (Optional) AutoCAD (30 Days Trial Version) Reference Guide Project Workbook

Advanced bolt assessment through process automation

CHAPTER 4 4 NUMERICAL ANALYSIS

Workshop. Tennis Racket Simulation using Abaqus

ABAQUS Tutorial. 3D Modeling

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

The elements used in commercial codes can be classified in two basic categories:

Product Synthesis. CATIA - Product Engineering Optimizer 2 (PEO) CATIA V5R18

STRUCTURAL ANALYSIS SKILLS

Integrative Optimization of injection-molded plastic parts. Multidisciplinary Shape Optimization including process induced properties

MULTIDISCIPLINARY DESIGN OPTIMIZATION (MDO) USING ANSA/µETA POSTPROCESSOR AND ISIGHT

CastNet: Modelling platform for open source solver technology

CAD/ CAM Prof. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 03 What is CAD/ CAM

The Basics of FEA Procedure

Getting Started with ANSYS ANSYS Workbench Environment

T-FLEX Parametric CAD is a full-function software system providing mechanical design professionals with the tools they need for today's complex

Solved with COMSOL Multiphysics 4.3

Finite Element Modeling

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

How To Model Space Frame Structure In Cad 3D Software

ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION

CAD / CAM Dr. P. V. Madhusuthan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 12 Reverse Engineering

Animations in Creo 3.0

2.3 Example: creating a model of an overhead hoist with ABAQUS/CAE

New features DWOS 3.2

Pro/ENGINEER Wildfire 4.0 Basic Design

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus

Signpost the Future: Simultaneous Robust and Design Optimization of a Knee Bolster

FATIGUE CONSIDERATION IN DESIGN

CimatronE Version 8.0 A Product Review Summary

How To Program A Laser Cutting Robot

innovative solutions for durability and fatigue pre- & post-processing ANSA μετα p i o n e e r i n g software systems

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE

Kalibrierung von Materialparametern und Optimierung eines Elektromotors mit optislang

CATIA Drafting TABLE OF CONTENTS

CATIA V5R21 - FACT SHEET

AN EXPLANATION OF JOINT DIAGRAMS

CFturbo Modern turbomachinery design software

OpenFOAM Optimization Tools

ICEM CFD Tutorial. Simple Duct Grid

Finite Element Analysis

Material property tests of Smooth-on Vytaflex60 liquid rubber

CCTech TM. ICEM-CFD & FLUENT Software Training. Course Brochure. Simulation is The Future

Chapter. 4 Mechanism Design and Analysis

NX CAD/CAM 3-Axis Milling Foundation

Multiphase Flow - Appendices

Constrained Tetrahedral Mesh Generation of Human Organs on Segmented Volume *

Introduction: Keywords: CFD, MRF, Blower Angular Orientation

Alphacam Art combines Vectric s Aspire artistic design software with the market leading Alphacam manufacturing software.

Back to Elements - Tetrahedra vs. Hexahedra

Nonlinear Analysis Using Femap with NX Nastran

Vincent Constantin, CADFEM (Suisse) AG

Steady Flow: Laminar and Turbulent in an S-Bend

Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT

*Currently employed at UTAS, work for this paper was carried out while the author was formerly employed at MSC Software.

Application Example: Quality Control of Injection-Molded Parts

Tutorial - PEST. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling

Finite Elements for 2 D Problems

How SolidWorks Speeds Consumer Product Design

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina

LMS Virtual.Lab Realistic Simulation in CATIA V5. Why CAE? Design-Right/First-Time

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

CATIA Tubing and Piping TABLE OF CONTENTS

CATIA Electrical Harness Design TABLE OF CONTENTS

Equivalent Spring Stiffness

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.

Files Used in this Tutorial

DWOS Lava Edition 5.0 new features

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

npsolver A SAT Based Solver for Optimization Problems

Creation of an Unlimited Database of Virtual Bone. Validation and Exploitation for Orthopedic Devices

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

Visualization Plugin for ParaView

GAMBIT Demo Tutorial

HowTo Rhino & ICEM. 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM)

CONVERGE Features, Capabilities and Applications

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

Electromagnetic Sensor Design: Key Considerations when selecting CAE Software

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

Best practices for efficient HPC performance with large models

Designing and Drawing a Sprocket Visualizing ideas through the creation of CAD solid models is a key engineering skill.

Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units)

SOLIDWORKS SIMULATION

Windchill PDMLink Curriculum Guide

Optimizing an Electromechanical Device with Mulitdimensional Analysis Software

Little LFO. Little LFO. User Manual. by Little IO Co.

Transcription:

Topology and Shape Optimization with Abaqus 1

Overview Introduction / Overview / Positioning What optimization is What ATOM does Where ATOM fits in ATOM Workflow ATOM integration in Abaqus/CAE Key ATOM Concepts Design Responses Objective functions Constraints Manufacturing using Geometric Restrictions Execution and Monitoring Results Postprocessing ATOM Examples ATOM Summary and Benefits 2

Introduction Abaqus Topology Optimization Module (ATOM) is a new product, launched with the release of Abaqus 6.11. Product features: Topology Optimization removes volume to find more efficient topologies. Shape Optimization moves nodes to smooth peak stresses or other objectives. ATOM = Optimizer + Abaqus Parts and Assemblies Large deformation Contact Non-linear materials Manufacturing restrictions Export results to CAD 3

Topology Optimization Topology optimization is a phrase used to characterize design optimization formulations that allow for the prediction of the lay-out of a structural and mechanical system. That is, the topology or landscape of the structure is an outcome of the procedure. - Martin P. Bendsøe and Ole Sigmund How does ATOM achieve this? o Given an initial material distribution (left), topology optimization produces a new landscape (right) by scaling the relative densities of the elements in the design domain. o Elements with large relative densities are retained (shown in green) while those elements whose relative densities have become sufficiently small are assumed to be voids. Thus a new landscape is obtained. 4

Shape Optimization Shape optimization refers to procedures that result in the prediction of a boundary (or shape) of the design domain of the structural/mechanical system to be optimized. How does ATOM achieve this? o In a finite element analysis, nodes on the boundary are displaced in order to achieve an objective (minimization of stress on the surface for example). o Thus, a new shape is obtained. 5

SIMULIA s Design Exploration and Optimization Tools ATOM Optimization Test Data Match Six Sigma Isight Taguchi RD Topology optimization Monte Carlo DOE Exploration ATOM Tuned for topology and shape optimization Not feature based or non parametric Can handle a very large number of design variables. (~100K-1000K) Single objective optimization Shape optimization Isight A general purpose design exploration and optimization package Feature based or Parametric Meant for small number of design variables(~10-100) Multi-objective, multi-discipline optimizations possible 6

ATOM Workflow Introduction / Overview / Positioning What optimization is What ATOM does Where ATOM fits in ATOM Workflow ATOM integration in Abaqus/CAE Key ATOM Concepts Design Responses Objective functions Constraints Manufacturing using Geometric Restrictions Execution and Monitoring Results Postprocessing ATOM Examples ATOM Summary and Benefits 7

ATOM Lifecycle Start with CAD assembly Exported to CAD ATOM ATOM 8

Solver Iterations Specify problem Iterative process Write.inp file Each Abaqus job can be parallel Modify.inp file Topology optimization Scale material density No Abaqus/Standard Postprocess ATOM Shape optimization Move nodes Design Proposal? ~50 solver iterations is typical Visualize Smooth output Afterwards, export to CAD in INP or STL format Export to CAD 9

ATOM Workflow: Optimization Setup The flow chart on the left shows the user actions required to setup the optimization Each user action is associated with a manager in the Optimization module accessible from the Optimization Module Toolbox or the Model Tree 10

ATOM Workflow: Execution and Monitoring Once an Optimization Task is setup, an Optimization Process needs to be defined to execute the optimization Users may have multiple Abaqus models and optimization tasks defined. An optimization process refers to a unique Model and Task combination. Right-click on the optimization process to access: Validate, Submit, Restart, Monitor, Extract and Results postprocessing 11

ATOM Workflow: Results Visualization The Abaqus Visualization module allows for convenient visualization of optimization results 12

Key ATOM Concepts Introduction / Overview / Positioning What optimization is What ATOM does Where ATOM fits in ATOM Workflow ATOM integration in Abaqus/CAE Key ATOM Concepts Design Responses Objective functions Constraints Manufacturing using Geometric Restrictions Execution and Monitoring Results Postprocessing ATOM Examples ATOM Summary and Benefits 13

clamped end clamped end Relaxation and Penalization In order to apply gradient-based optimization techniques (which can be more efficient), the integer value problem is relaxed The design variables (relative densities) are assumed to be continuous Load u out How do we interpret the intermediate density elements? We don t! We use an approach that penalizes intermediate density elements so that they are not favorable in the final solution. 14

Creating an Optimization Task An Optimization Task identifies the type of optimization and the design domain for the optimization. The task serves to configure the optimization algorithm to be used Create an optimization task from the model tree or the optimization toolbox as shown Choose the Optimization task type accordingly Each task contains design responses, objective functions, constraints, geometric restrictions and stop conditions 15

Optimization Task Design Responses Single or multiple terms Region based Select the step to extract results from or load cases Operators: Sum Minimum Maximum Deviation from Max Number of values e.g. sum the element strain energy 16

Optimization Workflow Objective Functions Objective Functions can be created from any previously defined Design Responses Allows combining multiple Design Responses Further, the Objective Function is always a weighted sum of the Design Responses specified in the Objective Function editor Reference values are constants subtracted from the Design Response Targets: o Minimize, Maximize, Minimize the maximum weighted difference from the maximum 17

Optimization Workflow Constraints Uses already defined Design Response s Allows constraining the Design Response to: Greater than Greater than a fraction of the initial value Less than Less than a fraction of the initial value E.g: Constraint the volume to be less than 35% of the original volume 18

Optimization Workflow Geometric Restrictions Geometric Restrictions are additional constraints enforced independent of the optimization Geometric restrictions can be used to enforce symmetries or minimum member sizes that are desired in the final design Demold control is perhaps the most important geometric restriction. It enables the user to place constraints such that the final design is manufacturable 19

Geometric Restrictions: Overview The following geometric restrictions are available: Frozen areas Member Size Demolding Cyclic symmetry Planar, Point and Rotational Symmetry Contact and Rotational Symmetry 20

Geometric Restrictions: Demold control If the topology obtained from the optimization is to be produced by casting, the formation of cavities and undercuts need to be prevented by using demold control Demold region: region where the demold control restriction is active Collision check region: region where it is checked if a removal of an element results in a hole or an undercut o This region is same as the demold region by default o This region should always contain at least the demold region The pull direction: the direction in which the two halves of the mold would be pulled in (as shown, bottom right) Center plane: central plane of the mold (as shown, bottom right) o Can be specified or calculated automatically 21

Geometric Restrictions: Demold Control Stamping option enforces the condition that if one element is removed from the structure all others in the ± pull direction are removed too In the gear example, a stamping constraint was used to ensure that only through holes are formed. Forging is a special case of casting. The forging die needs to be pulled only in one direction. Forging option creates a fictitious central plane internally on the back plane (shown below) so that pulling takes place in only one direction 22

Comparison with/out manufacturing constraints With forging constraint Without any manufacturing constraint 23

Geometric Restrictions: Symmetry Symmetry Topology Optimization of symmetric loaded components usually leads to a symmetric design In case we want a symmetric design but the loading isn t symmetric, it is necessary to enforce symmetry Plane symmetry Rotational symmetry Cyclic symmetry Point symmetry 24

Geometric Restrictions: Frozen Area Frozen area constraints ensure that no material is removed from the regions selected as frozen (relative density here is always 1) These constraints are particularly important in regions where loads and boundary conditions are specified since we don t want these regions to become voids. In the gear example, the gear teeth and the inner circumference were kept frozen. We didn t want to lose contact with the shaft or loose the load path. Frozen 25

Geometric Restrictions (Shape Optimization) Additional geometric restrictions are available in shape optimization that help maintain manufacturability Geometric restrictions unique to shape optimization are: o Turn control o Drill control o Stamp control o Growth o Design direction o Penetration check o Slide region control 26

ATOM Execution and Monitoring Introduction / Overview / Positioning What optimization is What ATOM does Where ATOM fits in ATOM Workflow ATOM integration in Abaqus/CAE Key ATOM Concepts Design Responses Objective functions Constraints Manufacturing using Geometric Restrictions Execution and Monitoring Results Postprocessing ATOM Examples ATOM Summary and Benefits 27

Execution New Process(similar to Adaptivity or Co-execution) Restart a stopped analysis run Allows control on maximum number of jobs, results ODB merge, etc Abaqus/CAE queues are supported (LSF/etc) 28

Monitoring Log shows the optimization progress iteration by iteration Errors/Warning can be tracked ATOM output file is exposed for more advanced users Abaqus jobs can be monitored from within the Optimization monitor 29

Postprocessing Introduction / Overview / Positioning What optimization is What ATOM does Where ATOM fits in ATOM Workflow ATOM integration in Abaqus/CAE Key ATOM Concepts Design Responses Objective functions Constraints Manufacturing using Geometric Restrictions Execution and Monitoring Results Postprocessing ATOM Examples ATOM Summary and Benefits 30

ATOM ODB with merged results An ODB is created during the optimization, merging Abaqus results from each individual optimization iteration Abaqus analysis Complete Abaqus results are provided from Iteration 0 The ATOM_OPTIMIZATION step contains optimization output from each optimization iteration A new _Optimization step is created for each Abaqus step and results from the last iteration or first mode are saved for each optimization iteration A frame is created in each optimization step for each iteration to track optimization iterations as history 31

Postprocessing For Topology Optimization A cut based material fraction is automatically created to show the resulting design surface 32

Postprocessing for Shape Optimization ATOM performs shape optimization by modifying the node locations defined for Abaqus input for each iteration ATOM post processing tracks these modifications as offsets from the original configuration (vector field variable DISP_OPT) The DISP_OPT offsets are automatically added to the nodal locations when viewing the model in optimization steps. 33

History Output Use the History output variables in Abaqus/CAE to monitor constraints and Objectives 34

Optimization Report Ensure that the optimization constraints have been satisfied within tolerance Optimization_report.csv is created in the working directory ITERATION OBJECTIVE-1 OBJ_FUNC_DRESP:COMPLIANCE OBJ_FUNC_TERM:COMPLIANCE OPT-CONSTRAINT-1:EQ:VOL Norm-Values: 0.6456477 0.6456477 0.6456477 0.8000001 0 0.6456477 0.6456477 0.6456477 1 1 0.6497207 0.6497207 0.6497207 0.948712 2 0.6501995 0.6501995 0.6501995 0.9437472 3 0.6512569 0.6512569 0.6512569 0.9382778 4 0.6520502 0.6520502 0.6520502 0.93318 22 0.6916615 0.6916615 0.6916615 0.8315618 23 0.6954725 0.6954725 0.6954725 0.8268944 24 0.7028578 0.7028578 0.7028578 0.8217635 25 0.8512989 0.8512989 0.8512989 0.8169149 26 0.7232164 0.7232164 0.7232164 0.8110763 27 0.7404507 0.7404507 0.7404507 0.8057563 28 0.7356095 0.7356095 0.7356095 0.8024307 35

ATOM Examples Introduction / Overview / Positioning What optimization is What ATOM does Where ATOM fits in ATOM Workflow ATOM integration in Abaqus/CAE Key ATOM Concepts Design Responses Objective functions Constraints Manufacturing using Geometric Restrictions Execution and Monitoring Results Postprocessing ATOM Examples ATOM Summary and Benefits 36

Bridge design 37

Comparing the topology optimization result to well established designs 38

ATOM Example : Pull Lever on a Press Lever is redesigned to retain stiffness, with reduced weight Initial volume Validate FEA model Design Proposal 39

Example: Shape optimization Even small shape variations can lead to large changes in the objective E.g: Small changes in shape can reduce peak stresses by as much as 25% or even more. 40

ATOM Summary and Benefits ATOM is a new product in Abaqus 6.11 Provides advanced capabilities for nonlinear structural optimization Shortens design cycles and enables faster time-to-market Provides engineers and product designers with: Manufacturable designs which meet their structural needs Improved design performance Reduces costs associated with weight/mass 41