COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

Size: px
Start display at page:

Download "COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS"

Transcription

1 International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp , Article ID: IJARET_07_02_004 Available online at Journal Impact Factor (2016): (Calculated by GISI) ISSN Print: and ISSN Online: IAEME Publication COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS Praveen Padagannavar School of Aerospace, Mechanical & Manufacturing Engineering Royal Melbourne Institute of Technology (RMIT University) Melbourne, VIC 3001, Australia ABSTRACT Modals with complicated geometry, complex loads and boundary condition are difficult to analyse and evaluate in the terms of strain, stress, displacement and reaction forces by using theoretical methods. A given modal can be analysed by using Finite Element Method easily with the help of computer software ABAQUS CAE and can get approximate solutions. This report is about modelling two dimensional and three dimensional analyses with the ABAQUS CAE for plane stress, plane strain, shell, and beam and 3d solid modal elements. The report will show hand sketch, procedure to simulate and solve the problems, submit and monitor analysis jobs and view results using ABAQUS CAE software for different elements and compare with theoretical calculation. The result also gives the information of stresses and strains generated in the Plate and its deformation for different boundary conditions and loads. In addition, this report will analyse the data, compare results and validate theoretical results, this will help us to understand the software, its capabilities and accuracy. Cite this Article: Praveen Padagannavar, Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus. International Journal of Advanced Research in Engineering and Technology, 7(2), 2016, pp editor@iaeme.com

2 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus 1. INTRODUCTION Finite Element Analysis is an approach that uses mathematical approximation to simulate geometry and load conditions. ABAQUS is powerful finite element software for engineers which can solve linear analysis to nonlinear problems. This software will guide engineers to simulate, analyse and evaluate the results produced by modelling for different kinds of structures and can modify current modal. ABAQUS software used to analyse and investigate problems for two dimensional and three dimensional modelling with different element types based on the given theoretically structure. Finite Element Analysis is important tool to carry out results with using numerical method to solve engineering problems; it can solve any complex geometry. Finite element analysis is to identify the weakness of design and validate the proper material property required for particular modal. The ABAQUS/CAE has been designed for finite element analysis and to simulate two dimensional and three dimensional models for plane stress, plane strain, shell, beam and 3D model and shell elements and analyse the results. Objective: The objective is to analyse stresses and deformations under F1 and F2 loads and compare the model for plane stress, plane strain elements (2-D modelling), shell element, beam element and 3D model using ABAQUS/CAE and validate the results by comparing theoretical solution. 1.1 Requirements 1. Use the ABAQUS/CAE software to evaluate the stresses and deformations of the given load. 2. Compare the performance and suitability for the following modelling:- Plane stress elements Plane strain elements Shell elements Beam elements 3D solid elements 3. Validate the results by comparing with the theoretical. 2. MODAL DEVELOPMENT 2.1 HAND SKETCH 31

3 Praveen Padagannavar Figure 1 Hand sketch (full and half model) Figure 2 Hand sketch (beam model) 2.2 STEPS FOR MODELLING AND IT S EXPLANATIONS: Step 1: Go to program and select Abaqus CAE then the Abaqus window will open select for with standard modal. Step 2: Start with first part Module Part in this module we need to modal the frame, in this we can create, edit, and manage the part. This is functional units of Abaqus called modules. In our case we are creating modal. Click on part and then select part manager. For PLANE STRESS, PLANE STRAIN MODEL In the part manager click on create then the part create new window will open select for 2D planar modelling space, deformable type, Shell feature and approximate size and then continue and dismiss the previous window. For SHELL MODEL In the part manager click on create then the part create new window will open select for 3D planar modelling space, deformable type, Shell feature and approximate size and then continue and dismiss the previous window. Each node of the shell element can move in U1, U2,U3 and UR1, UR2,UR3 For BEAM In the part manager click on create then the part create new window will open select for 2D planar modelling space, deformable type, wire feature and approximate size and then continue and dismiss the previous window. For 3D element In the part manager click on create then the part create new window will open select for 3D planar modelling space, deformable type, Solid feature extrusion and approximate size and then continue and also add the value of depth. Create points in the grid coordinates points then create the line by selecting the coordinate s points. Then at the bottom click on done. Now we created the modal frame. We need to create partition in the modal so that we can apply boundary condition, forces and also important for proper meshing and its structure. The partition is created by using datum and partition feature which is in main toolbar tools editor@iaeme.com

4 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus Figure 3 3D, shell, beam geometry Step 3: Select the second part that is Property Module in this module we need to apply material properties to the given modal frame that is define materials, material behaviour and define section. Assigning each material property and region the part. Start with Material which is located at the top main menu toolbar, click on it and then select on create. Here we are defining material. Edit material new window box will open. Select on mechanical, change to elasticity elastic. Linear elastic modal is isotropic and have elastic strain. Put the values of Young s Modulus and Poisson s Ratio and then click OK. These are parameter area to be defined. Secondly, select Section in this feature we need to apply cross sectional of the modal frame. For PLANE STRESS, PLANE STRAIN MODEL: Create section dialogue box will open then click on solid homogeneous and continue and also put the values of thickness. For SHELL MODEL: Create section dialogue box will open then click on solid homogeneous and continue and also put the values of thickness and also create the shell homogeneous and continue. For BEAM MODEL: Create section dialogue box will open then click on beam beam. Edit beam section window will open. Click here to create beam profile, select rectangular profile and continue. Rectangular profile is geometric data of rectangle solid. For 3D MODEL: Create section dialogue box will open then click on solid homogeneous and continue. Finally, select Assign and click on section and then select the region to be assigned select entire modal frame and click Done at the bottom. Section properties that have assigned to the part assigned automatically to all instance. Step 4: The third part is Assembly Module. In our modal we have only one assembly editor@iaeme.com

5 Praveen Padagannavar Select Instance and click on create-instance means own coordinate system. In this new window we need to select parts and dependent instance type and click OK. Click only OK, because if we click apply and ok means then we are creating two instances and one is sitting behind the modal, so here is important to click only ok. Dependent is the original part. Step 5: The fourth part is Step Module Select step which is located at the top of the toolbar and click on create. In step we can edit or manipulate the current modal. In this new window box change the setting to linear perturbation procedure type and static, linear perturbation and click Continue. Linear perturbation analysis provides linear response of the modal. Give description to the step-1 and click Ok. Step 6: The fifth part is Load Module in this module we will apply boundary condition and load to the modal frame. Boundary condition fixes the degree of freedom and has two types rotational and translational degree of freedom. Select BC which is located at the top of the toolbar and click on create. Then create boundary condition dialogue box will open and then change the settings to Initial -- mechanical category displacement/ rotation and then click continue. Select the region to apply BC. Displacement / rotation means holding the movement of selected nodes dof to 0 Select the two corner points to of the modal frame. Now it s time to apply Load select for it which is located at the top. We should name the load, type of load and apply. Then click on create load, change the setting to Step-1, mechanical and concentrated force (applied to vertices) and click continue. Concentrated force is to the nodes Now pick up the points to apply load. After picking the points when you click done, another window will open this window will show the direction of the load. Figure 4 load and boundary condition Step 7: The sixth part is Mesh Module in this module we will mesh the modal frame according to the requirement to get proper results. Mesh means converting whole material into small network and also we can define mesh density, mesh shape 34 editor@iaeme.com

6 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus (1 or 2 or 3 dimensional) and mesh element. The main aim of mesh is to reduce the error while solving the results. We can also mesh by partition so that the mesh structure will be finer and perfect shape. Mesh is created to confirm the node position and element. Click on Part-1 First, select seed which is located at the top and click on part and put the values of approximate global size seeds and then click OK and Done. Seeding is used to specify mesh density. Seeds are only located at the edges. While, putting the value we need to select properly otherwise it will show deformation size is large error, that time we must decrease the number. Secondly, select Mesh and click on element type. Select the region to be assigned element type, select the entire modal frame and click Done. We need to compare the performance, relevance and suitability of modelling. The new window box will open that is element type, change the settings: Element type: Plane stress modal the family is plane stress. Plane strain modal the family is plane strain. Plane shell modal the family is shell and quadratic. Beam modal the family is beam. Finally, again select Mesh and click on part and then click yes at the bottom mesh the part. Step 8: The final part is Job Module in this module we will submit the modal frame for analysis and evaluation and get the results. This is the last step. Select the Job located at the top and click on create. In this dialogue box name the job and click continue and OK. Again select job and click on manager and submit the job (modal frame) for evaluation. Check for the command completed successfully Then click on results to view the results. Then click on report which is at the top and then click on field output. Give the location to save the abaqus.rpt, so that we can check the report. Save the modal. Results can also be viewed in visualisation module. We can see deformed shape, undeformed shape and contours. 2.3 MODEL GEOMETRY DETAILS: Load for condition (i) F1=50 and F2=0 AND (ii) F1=50 and F2=50 (Depends upon condition) F1 is in y- direction and F2 is in x direction Poisson ratio v = 0.33 and E=200Gpa Mpa Thickness = 2X, X= *101 Thickness = 2.202mm Full model or half model is done depending on required conditions 35 editor@iaeme.com

7 Praveen Padagannavar 2.4 BOUNDARY CONDITION Roller support means fixing and making the model movable only in the x direction and constrained at y-axis. Fixed support means fixing in the respective x and y direction making the structure rigid. Translational motion in axis 1 and 2 are constrained for both the nodes. Mesh: Finite Element Method involves breaking a given structure into smaller element with simple geometry and theoretical solution. The elements are joined to each other at Nodes, this procedure is called Meshing. According to this paper, there are three types of mesh element type: - (1) Linear Reduced Integration (2) Linear and (3) Quadratic. Geometric order of the mesh elements: There are two types of mesh elements, namely linear order and Quadratic order. Linear means first order elements and Quadratic means second order elements. 3. ABAQUS RESULTS 3.1 Element Type: Plane Stress Model: Full Model (case (i) F1=50, F2=0) Figure 6 Deformation of plane stress element (full model case (i)) Node Label1 1 1 E.E11@Loc 1 E.E22@Loc 1 Loc 1 Loc E E E E E-03 Min E E E E Node Max E E E E Node Total E E E-03 Table 2 Output data of plane stress element (full model case (i)) 36 editor@iaeme.com

8 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 48. The upper layer of the model is tension and bottom layer is compression. Further, consider the nodal label 48 stress values that are S11 and compare this value with calculated theoretical values at the same point. 3.2 Element Type: Plane Stress Model: Full Model (case (ii) F1=50, F2=50) Node Label1 Figure 7 Deformation of plane stress element (Full model case (ii)) 1 1 E.E11@Loc 1 E.E22@Loc 1 Loc 1 Table 3 Output data of plane stress element (full model case (ii)) Loc E E E E E-03 Min E E E E Node Max E E E E Node Total E E The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 48. The upper layer of the model is compression and bottom layer is tension. Further, consider the nodal label 48 stress values that is S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

9 Praveen Padagannavar 3.3 Element Type: Plane Strain Model: Half Model (case (i) F1=50, F2=0) Node Label1 Figure 8 Deformation of plane strain element (half model case (i)) 1 1 E.E11@Loc 1 E.E22@Loc 1 Loc 1 Loc E E E E E-03 Min E E E E Node Max E E E E Node Total E E E E E E+03 Table 4 Output data of plane strain element (Half model case (i)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 9. Further, consider the nodal label 9 stress value that is S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

10 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus 3.4 Element Type: Plane Strain Model: Full Model (case (ii) F1=50, F2=50) Figure 9 Deformation of plane strain element (full model case (ii)) Node Loc 1 1 E.E11@Loc 1 E.E22@Loc 1 Loc 1 Label E E E E E-03 Min E E E E Node Max E E E E Node Total E E Table 5 Output data of plane strain element (full model case (ii)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 48. The upper layer of the model is compression and bottom layer is tension. Further, consider the nodal label 48 stress values that are S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

11 Praveen Padagannavar 3.5 Element Type: Shell Model: Half Model (case (i) F1=50, F2=0) Figure 10 Deformation of shell element (half model case (i)) Node Label1 1 1 E.E11@Loc 3 E.E22@Loc 3 Loc 3 Loc E E E E E E-03 Min E E E E Node Max E E E E Node Total E E E E Table 6 Output data of shell element (half model case (i)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 15. Further, consider the nodal label 15 stress values that are S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

12 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus 3.6 Element Type: Shell Model: Full Model (case (ii) F1=50, F2=50) Figure 11 Deformation of shell element (full model case (ii)) Node Label1 1 1 E.E11@Loc 3 E.E22@Loc 3 Loc 3 Loc E E E E E-06 Min E E E E Node Max E E E E Node Total E E Table 7 Output data of shell element (full model case (ii)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 71. The upper layer of the model is compression and bottom layer is tension. Further, consider the nodal label 71 stress values that are S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

13 Praveen Padagannavar 3.7 Element Type: Beam Model: Full Model (case (i) F1=50, F2=0) Figure 12 Deformation of Beam element (full model case (i)) Node Label1 1 1 E.E11@Loc 3 Loc E E E Min E E E Node Max E E E E-12 Node Total E E+03 Table 8 Output data of Beam element (full model case (i)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 50. The upper layer of the model is tension and bottom layer is compression. Further, consider the nodal label 50 stress values that are S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

14 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus 3.8 Element Type: Beam Model: Full Model (case (ii) F1=50, F2=50) Figure 13 Deformation of Beam element (full model case (ii)) Node Label1 1 1 E.E11@Loc 3 Loc E E E Min E E E Node Max E E E Node Total E E Table 9 Output data of Beam element (full model case (ii)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 50. The upper layer of the model is compression and bottom layer is tension. Further, consider the nodal label 50 stress value that is S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

15 Praveen Padagannavar 3.9 Element type: 3D Solid Model: Half Model (case (i) F1=50, F2=0) Figure 14 Deformation of 3d solid element (half model case (i)) Node Label1 1 1 E.E11@Loc 1 E.E22@Loc 1 Loc 1 Loc E E E E Min E E E E Node Max E E E E Node Total E E E-03 Table 10 Output data of 3D solid element (full model case (i)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 45. Further, consider the nodal label 45 stress values that are S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

16 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus 3.10 Element type: 3D Solid Model: Full Model (case (ii) F1=50, F2=50) Figure 15 Deformation of 3d solid element (full model case (ii)) Node Label1 1 1 E.E11@Loc 1 E.E22@Loc 1 Loc 1 Loc E E E E E-03 Min E E E E Node Max E E E E Node Total E E Table 11 Output data of 3D solid element (full model case (ii)) The table shows the ABAQUS results that is displacement, strain components and stress components. In order to analyse the stress we need to select top middle point that is node label 284. The upper layer of the model is compression and bottom layer is tension. Further, consider the nodal label 284 stress values that are S11 and compare this value with calculated theoretical values at the same point editor@iaeme.com

17 Praveen Padagannavar 4. THEORETICAL CALCULATION 46

18 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus 47

19 Praveen Padagannavar 48

20 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus The calculation is done on the element point C 49 editor@iaeme.com

21 Praveen Padagannavar 5. VALIDATION Comparison between theoretical and ABAQUS for values Half or full model Case (i) F1=50, F2=0 ELEMENT TYPE STRESS THEORETICAL ABAQUS (S11) Plane stress Mpa Mpa Plane strain Mpa E-03 Mpa Shell Mpa E-03 Mpa Beam Mpa Mpa 3D solid Mpa Mpa Table 12 Theoretical and ABAQUS results for case (i) F1=50, F2=0 The table shows theoretical and ABAQUS values for the case (i) F1=50 and F2=0 for full or half model. According to theoretical calculation the stress value is Mpa and ABAQUS results vary. In the case of beam the theoretical and Abaqus results are same that is In the case of plane stress, the theoretical stress value is Mpa and Abaqus value is , the values are not accurate. Comparison between theoretical and ABAQUS values for full model Case (ii) F1=50, F2=50 ELEMENT TYPE STRESS THEORETICAL ABAQUS (S11) Plane Stress 6.187Mpa Mpa Plane Strain 6.187Mpa Mpa Shell 6.187Mpa Mpa Beam 6.187Mpa Mpa 3D solid 6.187Mpa Mpa Table 13 Theoretical and ABAQUS results for case (ii) F1=50, F2=50 The table shows theoretical and ABAQUS values for the case (ii) F1=50 and F2=50. According to theoretical calculation the stress value is 6.187Mpa and ABAQUS results more or less similar. In the case of beam the theoretical values is 6.187Mpa and Abaqus result is Mpa, the values are closer. In the case of plane stress, the theoretical stress value is 6.187Mpa and Abaqus value is Mpa which is almost similar editor@iaeme.com

22 Computational Engineering of Finite Element Modelling For Automotive Application Using Abaqus Comparison between theoretical and ABAQUS values for Beam model Case (i) F1=50, F2=0 ELEMENT TABLE BEAM THEORETICAL BEAM ABAQUS S11 (CASE i) Table 14 Beam Theoretical and ABAQUS results for case (i) F1=50, F2=0 The table shows theoretical and ABAQUS values for the Beam case (i) F1=50 and F2=0 model. According to theoretical calculation, the stress value is 18.56Mpa and ABAQUS results are which exactly the same is. 6. DISCUSSION The Purpose of this paper is to compare the results from ABAQUS and theoretical calculation. Though hand calculations are accurate but it is more complicated or nearly impossible to do it in some cases and time consuming and also increases computational cost. The use of ABAQUS software is much easier and reliable. Plane stress, plane strain and beam elements were modelled in 2D analysis while Shell and 3D Solid elements were modelled in 3D elements. Different types of 2D and 3D elements can be selected for model analysis in ABAQUS/CAE. It was observed that out of plane normal and shear stresses are equal to zero. For Plane Stress elements, linear analysis was used and since 2D modelling was done on it, it is less expensive and less time consuming than 3D or Shell elements. Although the results were highly accurate. For Beam Elements, transverse shear deformations were allowed since element type for the given model was B21-linear node. This type of elements uses linear interpolation method for analysis. Also, results were very accurate. For 3D solid Elements, reduced integration was used. Also these elements do not have rotational degrees of freedom. The computational time is high. Also the bending behaviour is much stiffer. When we have a fine mesh it is best recommended to have the reduced integration method. In linear elements when there is no bending moment we use full integration point method. This happens because the element has edges that are unable to curve. The simulation gives values that are closer to the theoretical values. Stress Distribution: the stresses are mostly distributed/induced in the middle point of the full model because the force generated is higher in this point. The different forces would generate different stress. The beam element is most accurate because it is similar to the theoretical results. In contrast, the Shell and 3D model would have relatively more error when compared 51 editor@iaeme.com

23 Praveen Padagannavar with the theoretical results, this is due to three components x, y, and z directions of the displacement. Model simplification technique is used to simplify complex structural applications. This can be done without considering the thickness of the model and the forces can be assumed on respective nodes. To simplify the model analysis, we use step as linear perturbation for linear problems. Quadratic reduced-integration is the method that does not pose locking when there are stresses present. Thus these methods are used for simulation of stresses, strains and displacements. There are 2 types of shell elements, mainly linear full integration and reduced integration of elements. By using the linear reduced integration method and appropriately sizing the mesh distortion could be identified clearly. When the mesh is finely created the values are more accurate. This is experienced because the elements used here are tolerant to distortion. Shell elements are two types i.e. linear full and reduced integration elements. In linear elements when bending moment is not present we use full integration point. The element type for structure is kept same throughout the analysis. Manual calculations for these structures are done using theoretical and mathematical formulas. These are then compared. 7. CONCLUSION ABAQUS is a tool that is comprehensive and powerful that provide various analysis of structures by changing the modelling process during designing to get different results. This report analyses the deformations in a 2D planar, plane stress element, plane strain element, 3D shell element, beam element and 3D solid element. The values were manually calculated and the values were obtained by using ABAQUS. These were compared and assessed. These values and figures are tabulated and presented above. The simulations and calculations were performed for planar stresses, strains and the deformation in the shell structures. As seen in the above sections the figures clearly show sections with more stress/strain and deformations. During analysis it was understood that the techniques chosen such as linear or quadratic could influence the result of the analysis performed. Also different modules such as seeding, meshing, boundary conditions etc. need to be assigned carefully to get the best results. Compared values from ABAQUS and theoretical calculations nearly match each other. However there was slight difference. Since calculating the stresses/strain in real life structures is difficult and complex more accurate values could be obtained by using FEA with quadratic element method. Thus FEM using ABAQUS helps us in understanding the deformations and strength of the different engineering materials used more accurately and easily. REFERENCE [1] Takla, M 2015, Introduction to the finite element method, Lecture notes at RMIT University, Melbourne, Australia. [2] Takla, M 2015, Introduction to ABAQUS/CAE, Lecture notes at RMIT University, Melbourne, Australia. [3] Abaqus Version6.7 ABAQUS Analysis User Manual Engineering forums 52 editor@iaeme.com

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Workshop. Tennis Racket Simulation using Abaqus

Workshop. Tennis Racket Simulation using Abaqus Introduction Workshop Tennis Racket Simulation using Abaqus In this workshop you will become familiar with the process of creating a model interactively by using Abaqus/CAE. You will create the tennis

More information

ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket

ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket H. Kim FEA Tutorial 1 ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket Hyonny Kim last updated: August 2004 In this tutorial, you ll learn how to: 1. Sketch 2D geometry & define part. 2. Define material

More information

ABAQUS Tutorial. 3D Modeling

ABAQUS Tutorial. 3D Modeling Spring 2011 01/21/11 ABAQUS Tutorial 3D Modeling This exercise intends to demonstrate the steps you would follow in creating and analyzing a simple solid model using ABAQUS CAE. Introduction A solid undergoes

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

2.3 Example: creating a model of an overhead hoist with ABAQUS/CAE

2.3 Example: creating a model of an overhead hoist with ABAQUS/CAE The instructions for the examples discussed in this manual will focus on using the Model Tree to access the functionality of ABAQUS/CAE. Menu bar actions will be considered only when necessary (e.g., when

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

More information

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO INDUSTRIAL Título del proyecto: MODELING CRACKS WITH ABAQUS Pablo Sanchis Gurpide Pamplona, 22 de Julio del

More information

Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units)

Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units) APPENDIX A Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units) Objectives: Create a geometric representation of a cantilever beam. Use the geometry model to define an MSC.Nastran

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

ELASTO-PLASTIC ANALYSIS OF A HEAVY DUTY PRESS USING F.E.M AND NEUBER S APPROXIMATION METHODS

ELASTO-PLASTIC ANALYSIS OF A HEAVY DUTY PRESS USING F.E.M AND NEUBER S APPROXIMATION METHODS International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 50-56, Article ID: IJMET_06_11_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

An Overview of the Finite Element Analysis

An Overview of the Finite Element Analysis CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

Tower Cross Arm Numerical Analysis

Tower Cross Arm Numerical Analysis Chapter 7 Tower Cross Arm Numerical Analysis In this section the structural analysis of the test tower cross arm is done in Prokon and compared to a full finite element analysis using Ansys. This is done

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

CHAPTER 4 4 NUMERICAL ANALYSIS

CHAPTER 4 4 NUMERICAL ANALYSIS 41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

More information

CONSISTENT AND LUMPED MASS MATRICES IN DYNAMICS AND THEIR IMPACT ON FINITE ELEMENT ANALYSIS RESULTS

CONSISTENT AND LUMPED MASS MATRICES IN DYNAMICS AND THEIR IMPACT ON FINITE ELEMENT ANALYSIS RESULTS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 135 147, Article ID: IJMET_07_02_016 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. Preface p. v List of Problems Solved p. xiii Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. 6 Assembly of the Global System of Equations p.

More information

Piston Ring. Problem:

Piston Ring. Problem: Problem: A cast-iron piston ring has a mean diameter of 81 mm, a radial height of h 6 mm, and a thickness b 4 mm. The ring is assembled using an expansion tool which separates the split ends a distance

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

DETAILED STUDIES ON STRESS CONCENTRATION BY CLASSICAL AND FINITE ELEMENT ANALYSIS

DETAILED STUDIES ON STRESS CONCENTRATION BY CLASSICAL AND FINITE ELEMENT ANALYSIS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 148 167, Article ID: IJMET_07_02_017 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02 Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

PRO-MECHANICA. Lesson One < Structural > Beam Cantilever Beam

PRO-MECHANICA. Lesson One < Structural > Beam Cantilever Beam PRO-MECHANICA Pro-Mechanica is a product of PTC. It works with Creo Pro/E in integrated mode to allow users to perform structural and thermal analyses. This tutorial was originally written for UNIX platform,

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 12, Dec 2015, pp. 81-90, Article ID: IJMET_06_12_009 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=12

More information

Embankment Consolidation

Embankment Consolidation Embankment Consolidation 36-1 Embankment Consolidation In this tutorial, RS2 is used for a coupled analysis of a road embankment subject to loading from typical daily traffic. Model Start the RS2 9.0 Model

More information

Nonlinear Analysis Using Femap with NX Nastran

Nonlinear Analysis Using Femap with NX Nastran Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of

More information

Instructors Manual Finite Element Method Laboratory Sessions

Instructors Manual Finite Element Method Laboratory Sessions Instructors Manual Finite Element Method Laboratory Sessions Dr. Waluyo Adi Siswanto 6 July 2010 Universiti Tun Hussein Onn Malaysia (UTHM) This document is written in LYX 1.6.7 a frontend of LATEX Contents

More information

Finite Element Method

Finite Element Method 16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture

More information

Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

More information

STRUCTURAL ANALYSIS SKILLS

STRUCTURAL ANALYSIS SKILLS STRUCTURAL ANALYSIS SKILLS ***This document is held up to a basic level to represent a sample for our both theoretical background & software capabilities/skills. (Click on each link to see the detailed

More information

Learning Module 6 Linear Dynamic Analysis

Learning Module 6 Linear Dynamic Analysis Learning Module 6 Linear Dynamic Analysis What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner

More information

MASTER DEGREE PROJECT

MASTER DEGREE PROJECT MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :

More information

Technical Report Example (1) Chartered (CEng) Membership

Technical Report Example (1) Chartered (CEng) Membership Technical Report Example (1) Chartered (CEng) Membership A TECHNICAL REPORT IN SUPPORT OF APPLICATION FOR CHARTERED MEMBERSHIP OF IGEM DESIGN OF 600 (103 BAR) 820MM SELF SEALING REPAIR CLAMP AND VERIFICATION

More information

CosmosWorks Centrifugal Loads

CosmosWorks Centrifugal Loads CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

More information

Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners

Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners A R Abelin Roy Deptt. of ME, Govt. Engineering College, Thrissur, India Christopher Solomon S MMD VSSC, ISRO Thiruvananthapuram, India

More information

How To Write An Analysis System For Bridge Test

How To Write An Analysis System For Bridge Test Study of Analysis System for Bridge Test Chen Ke, Lu Jian-Ming, Research Institute of Highway, 100088, Beijing, China (chenkezi@163.com, lujianming@263.net) Summary Analysis System for Bridge Test (Chinese

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

An introduction to 3D draughting & solid modelling using AutoCAD

An introduction to 3D draughting & solid modelling using AutoCAD An introduction to 3D draughting & solid modelling using AutoCAD Faculty of Technology University of Plymouth Drake Circus Plymouth PL4 8AA These notes are to be used in conjunction with the AutoCAD software

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Computer Aided Engineering (CAE) Techniques Applied To Hip Implant

Computer Aided Engineering (CAE) Techniques Applied To Hip Implant International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 Computer Aided Engineering (CAE) Techniques Applied To Hip Implant 1, M. S. Abo_Elkhair, 2, M. E. Abo-Elnor,

More information

CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy

CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy CATIA V5 Tutorials Mechanism Design & Animation Release 18 Nader G. Zamani University of Windsor Jonathan M. Weaver University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com

More information

Benchmark Tests on ANSYS Parallel Processing Technology

Benchmark Tests on ANSYS Parallel Processing Technology Benchmark Tests on ANSYS Parallel Processing Technology Kentaro Suzuki ANSYS JAPAN LTD. Abstract It is extremely important for manufacturing industries to reduce their design process period in order to

More information

820446 - ACMSM - Computer Applications in Solids Mechanics

820446 - ACMSM - Computer Applications in Solids Mechanics Coordinating unit: 820 - EUETIB - Barcelona College of Industrial Engineering Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering Academic year: Degree: 2015 BACHELOR'S

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Nordic Steel Construction Conference 212 Hotel Bristol, Oslo, Norway 5-7 September 212 ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Marouene Limam a, Christine Heistermann a and

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

HowTo Rhino & ICEM. 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM)

HowTo Rhino & ICEM. 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM) HowTo Rhino & ICEM Simple 2D model 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM) 2) Set units: File Properties Units: Model units: should already be Millimeters

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

More information

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall. ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

More information

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION K.K. Choi, V. Ogarevic, J. Tang, and Y.H. Park Center for Computer-Aided Design College of Engineering The

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

Fatigue Analysis and Optimization of Flexible Printed Circuits

Fatigue Analysis and Optimization of Flexible Printed Circuits Fatigue Analysis and Optimization of Flexible Printed Circuits Alexander Ptchelintsev Nokia Research Center P.O. Box 407, FI-00045 NOKIA GROUP, Finland Email: alexander.ptchelintsev@nokia.com Abstract:

More information

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads 1 A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads By Dr. Siriwut Sasibut (Application Engineer) S-FRAME Software Inc. #1158 13351 Commerce Parkway

More information

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783 Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Understand the Sketcher workbench of CATIA V5.

Understand the Sketcher workbench of CATIA V5. Chapter 1 Drawing Sketches in Learning Objectives the Sketcher Workbench-I After completing this chapter you will be able to: Understand the Sketcher workbench of CATIA V5. Start a new file in the Part

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor

Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Pavan P.

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Behaviour of buildings due to tunnel induced subsidence

Behaviour of buildings due to tunnel induced subsidence Behaviour of buildings due to tunnel induced subsidence A thesis submitted to the University of London for the degree of Doctor of Philosophy and for the Diploma of the Imperial College of Science, Technology

More information

Learning Module 5 Buckling Analysis

Learning Module 5 Buckling Analysis Learning Module 5 Buckling Analysis Title Page Guide What is a Learning Module? A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with the

More information

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

Autodesk Fusion 360: Assemblies. Overview

Autodesk Fusion 360: Assemblies. Overview Overview In this module you will learn how different components can be put together to create an assembly. We will use several tools in Fusion 360 to make sure that these assemblies are constrained appropriately

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Reliable FE-Modeling with ANSYS

Reliable FE-Modeling with ANSYS Reliable FE-Modeling with ANSYS Thomas Nelson, Erke Wang CADFEM GmbH, Munich, Germany Abstract ANSYS is one of the leading commercial finite element programs in the world and can be applied to a large

More information

How To Calculate Tunnel Longitudinal Structure

How To Calculate Tunnel Longitudinal Structure Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer 1,2 Li Zhong, 2Chen Si-yang, 3Yan Pei-wu, 1Zhu Yan-peng School of Civil Engineering, Lanzhou University

More information

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING AP... Page 1 of 19 ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL Yasumasa Shoji, Satoshi Nagata, Toyo Engineering Corporation,

More information

How To Draw In Autocad

How To Draw In Autocad DXF Import and Export for EASE 4.0 Page 1 of 9 DXF Import and Export for EASE 4.0 Bruce C. Olson, Dr. Waldemar Richert ADA Copyright 2002 Acoustic Design Ahnert EASE 4.0 allows both the import and export

More information

Pro/ENGINEER Wildfire 4.0 Basic Design

Pro/ENGINEER Wildfire 4.0 Basic Design Introduction Datum features are non-solid features used during the construction of other features. The most common datum features include planes, axes, coordinate systems, and curves. Datum features do

More information

10.0-2. Finite Element Modeling

10.0-2. Finite Element Modeling What s New in FEMAP FEMAP 10.0 and 10.0.1 include enhancements and new features in: User Interface on page 3 Meshing on page 23 Mesh Associativity on page 33 Properties on page 33 Functions on page 35

More information

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL F2008-SC-016 CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL Boria, Simonetta *, Forasassi, Giuseppe Department of Mechanical, Nuclear and Production Engineering, University

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information