S-44 EDVO-Kit # Sci-On Biology. Micropipeting Basics EXPERIMENT OBJECTIVES: Storage: Store this experiment at room temperature

Similar documents
Use of Micropipettes

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012

Agarose Gel Electrophoresis with Food Color- Teacher Guide

How Does a Doctor Test for AIDS?

Lab 5: DNA Fingerprinting

Aseptic Technique. A GMP/GTP Training Module

Agilent High Sensitivity DNA Kit Guide

A STUDY ON THE EFFECTIVENESS OF PEER TUTORING AS A TEACHING METHOD IN HIGH SCHOOL BIOTECHNOLOGY LABS. June Camerlengo. Santa Fe High School

Inc. Wuhan. Quantity Pre-coated, ready to use 96-well strip plate 1 Plate sealer for 96 wells 4 Standard (liquid) 2

How do scientists collect and analyze data?

COMMON LABORATORY APPARATUS

Catalytic Activity of Enzymes

Transformation Protocol

The Determination of an Equilibrium Constant

DNA Electrophoresis Lesson Plan

HBV Quantitative Real Time PCR Kit

LAB 11 PLASMID DNA MINIPREP

Factors Affecting Enzyme Activity

PCR and Sequencing Reaction Clean-Up Kit (Magnetic Bead System) 50 preps Product #60200

RAINBOW ELECTROPHORESIS 1 An Introduction to Gel Electrophoresis

Objectives: Vocabulary:

THE UNIVERSITY OF NEWCASTLE- DISCIPLINE OF MEDICAL BIOCHEMISTRY. STANDARD OPERATING PROCEDURE PROCEDURE NO: GLP 079 MOD: 1st Issue Page: 1 of 7

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein

Fixed and Adjustable Spacing Electronic Pipettes

Measurement and Calibration

Blood-Based Cancer Diagnostics

Fighting the Battles: Conducting a Clinical Assay

Creatine Kinase (CK) Enzymatic Assay Kit Manual Catalog #:

BioResearch. RAFT 3D Cell Culture Kit Protocol

THE ACTIVITY OF LACTASE

Transformation Kit BACTERIAL TRANSFORMATION: GREEN FLUORESCENT PROTEIN. Partnership for Biotechnology and Genomics Education

Vitamin C Content of Fruit Juice

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

RNA Extraction and Quantification, Reverse Transcription, and Real-time PCR (q-pcr)

UltraClean PCR Clean-Up Kit

Instructions for Use. Components of the GENOTROPIN PEN 12

Calibration of Volumetric Glassware

LAB 7 DNA RESTRICTION for CLONING

Calibration of Volumetric Glassware

UltraClean Forensic DNA Isolation Kit (Single Prep Format)

Related topics: Application Note 27 Data Analysis of Tube Formation Assays.

Rat Creatine Kinase MB isoenzyme,ck-mb ELISA Kit

Crime Scenes and Genes

MTT Cell Proliferation Assay

User Manual Important: First read the Medication Guide that comes inside your FORTEO carton.

Human Free Testosterone(F-TESTO) ELISA Kit

Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual

Performance Qualification of an Automated Plate Washer Using the Artel MVS

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Malondialdehyde (MDA) ELISA

Uscn Life Science Inc. Wuhan

Cold Agglutination Titer detecting Cold Reacting Antibodies

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

INSTRUCTIONS FOR USE HUMIRA 40 MG/0.8 ML, 20 MG/0.4 ML AND 10 MG/0.2 ML SINGLE-USE PREFILLED SYRINGE

Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences

AxyPrep TM Mag PCR Clean-up Protocol

Mouse Keyhole Limpet Hemocyanin antibody(igm) ELISA Kit

Immunoglobulin E (IgE) concentrations in Human. Immunoglobulin E (IgE) Human ELISA Kit

PAPER CHROMATOGRAPHY

Lab Exercise 3: Media, incubation, and aseptic technique

INSTRUCTIONS FOR USE HUMIRA 40 MG/0.8 ML SINGLE-USE PEN

Your Personal Pipetting Robot

What Forensics Information Does Blood Typing Provide?

Enzymes: Amylase Activity in Starch-degrading Soil Isolates

Bydureon 2 mg powder and solvent for prolonged-release suspension for injection in pre-filled pen How to use Bydureon pre-filled pen

Blood Collection and Processing SOP

Partner: Jack 17 November Determination of the Molar Mass of Volatile Liquids

Assessment of Accuracy and Precision

Chemical reaction (slow): Enzyme-catalyzed reaction (much faster):

Protocol v001 Page 1 of 1 AGENCOURT RNACLEAN XP IN VITRO PRODUCED RNA AND CDNA PURIFICATION

Heat and Temperature: Teacher s Guide

Laboratory Biosafty In Molecular Biology and its levels

Transferring a Broth Culture to Fresh Broth

Proto col. GoClone Repor ter Construc ts: Sample Protocol for Adherent Cells. Tech support: Luciferase Assay System

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

UltraClean Soil DNA Isolation Kit

Activity Sheets Enzymes and Their Functions

EXERCISE # 1.Metric Measurement & Scientific Notation

IgM ELISA. For the quantitative determination of IgM in human serum and plasma. For Research Use Only. Not For Use In Diagnostic Procedures.

Mouse glycated hemoglobin A1c(GHbA1c) ELISA Kit

RealStar HBV PCR Kit /2012

RESTRICTION ENZYME ANALYSIS OF DNA

T100. BioTube Rack. Rack is made of 3 components: A white base A removable grid plate that can hold individual or strips of tubes A translucent cover

Agencourt RNAdvance Blood Kit for Free Circulating DNA and mirna/rna Isolation from μL of Plasma and Serum

The kit is a sandwich enzyme immunoassay for in vitro quantitative measurement of PST in mouse tissue homogenates and other biological fluids.

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials

An In-Gel Digestion Protocol

DNA Fingerprinting. Biotechnology - Electrophoresis & DNA Fingerprinting Biology Concepts of Biology 8.1. Name Instructor Lab Section.

Omega Pipettor. Operating Instructions

Rat Creatine Kinase MB Isoenzyme (CKMB) ELISA

Chapter 1 An Introduction to Chemistry

Table of Content. Enzymes and Their Functions Teacher Version 1

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP)

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION

HYFLAM D3: Report of Scenarios 08/02/2012

ABORhCard. ABORhCard Package Insert ABO and Rh Blood Grouping Device

Troubleshooting Sequencing Data

APPENDIX N BULK MILK TANKER SCREENING TEST FORM

Transcription:

Sci-On Biology S-44 EDVO-Kit # Storage: Store this experiment at room temperature EXPERIMENT OBJECTIVES: The objectives of this experiment are to become familiar with metric units of measurement and their conversions, to learn how to accurately pipet different microliter volumes using a micropipet and to practice micropipeting solutions of different viscosities. All components are intended for educational research only. They are not to be used for diagnostic or drug purposes, nor administered to or consumed by humans or animals. The Biotechnology Education Company www.edvotek.com

EDVO-Kit # S-44 3 Experiment Components Red dye Blue dye Yellow dye Glycerol Alcohol Buffer Pipeting Cards Microtiter plates Storage: Store entire experiment at room temperature. Requirements Automatic micropipets with tips Variable automatic (5-50 µl) or Fixed Volume (10 µl) Small container for discarding used tips All components are intended for educational research only. They are not to be used for diagnostic or drug purposes, nor administered to or consumed by humans or animals. EDVOTEK - The Biotechnology Education Company 1-800-EDVOTEK www.edvotek.com 24-hour FAX: (301) 340-0582 email: edvotek@aol.com

4 EDVO-Kit # S-44 Sci-On Biology Measuring Small Volumes with Micropipets Background Information Over the past several decades, advances in biotechnology have influenced many changes in experimental techniques and methods, including the volume of reagents and biological samples used. Depending upon the procedure being performed, biotechnology experiments can utilize a variety of volumes of biological samples and reagents, ranging from several hundreds of liters to very small microliter (µl) volumes. Pipeting is a critically important technique in life science experiments to ensure accurate experimental results. In typical biotechnology experiments, biologicals and reagents such as DNA, enzymes and buffers are transferred (by pipeting) into small microcentrifuge tubes which serve as reaction vessels. For these type of reactions, microliter volumes are typically used. There are 1,000 microliters in 1 milliliter of a solution. To put it in perspective, a 50 microliter sample is approximately equal in size to a single raindrop. A raindrop-sized sample is relatively large when compared to experimental samples which often are 10 to 50 microliters in volume. VARIABLE AUTOMATIC MICROPIPET To measure microliter volumes, a special instrument called a micropipet is used. The variable automatic micropipet is the preferred instrument for delivering accurate, reproducible volumes of sample. These instruments are manufactured to deliver samples in various ranges (e.g., 0.5-10 µl, 5-50 µl, 200-1000 µl, etc.) and usually can be adjusted in one microliter increments. Typically, these instruments have an ejector button for releasing the tip after sample delivery. Variable automatic micropipets can also be multi-channeled, designed to uniformly deliver several samples at the sample time. However, for this experiment, only one sample will be delivered at a time. Duplication of this document, in conjunction with use of accompanying reagents, is permitted for classroom/ laboratory use only. This document, or any part, may not be reproduced or distributed for any other purpose without the written consent of EDVOTEK, Inc. Copyright 2004 EDVOTEK, Inc., all rights reserved. The Biotechnology Education Company 1-800-EDVOTEK www.edvotek.com

Background Information Sci-On Biology EDVO-Kit # S-44 5 Measuring Small Volumes with Micropipets 1 2 3 4 SAMPLE DELIVERY WITH VARIABLE AUTOMATIC MICROPIPETS 1. Set the micropipet to the appropriate volume and place a clean tip on the micropipetor. Press the top button down to the first stop and hold it in place while placing the tip into the sample tube. 2. Once the tip is immersed in the sample, release the button slowly to draw sample into the tip. 3. Deliver the sample by pressing the button to the first stop -- then empty the entire contents of the tip by pressing to the second stop. Note: After delivering the sample, do not release the top button until the tip is out of the tube or vessel to which the sample is delivered. 4. Press the ejector button to discard the tip. Obtain a new clean tip for the next sample. Duplication of this document, in conjunction with use of accompanying reagents, is permitted for classroom/ laboratory use only. This document, or any part, may not be reproduced or distributed for any other purpose without the written consent of EDVOTEK, Inc. Copyright 2004 EDVOTEK, Inc., all rights reserved. The Biotechnology Education Company 1-800-EDVOTEK www.edvotek.com

Experiment Procedures Sci-On Biology EDVO-Kit # S-44 7 Experiment Overview BEFORE YOU START THE EXPERIMENT 1. Read all instructions before starting the experiment. 2. Write a hypothesis that reflects the experiment and predict experimental outcomes. EXPERIMENT CONTENT OBJECTIVE The objective of this experiment is to learn how to accurately pipet different microliter volumes using a micropipet and to practice micropipeting solutions of different viscosities. BRIEF DESCRIPTION OF THE EXPERIMENT Activity One is a Dry lab exercise to familiarize students with the metric system in micropipeting. In Activity Two, various dye samples will be diluted from concentrated solutions in microcentrifuge tubes and spotted in triplicate on a Pipet Card. Option A of this experiment involves pipeting of different volumes and requires a variable automatic micropipet (5-50 µl). Option B requires a 10 µl fixed micropipet. Samples with various viscosities, such as a solution containing glycerol and/or alcohol, will also be used to provide the opportunity to practice micropipeting solutions with different viscosities. The concentrated dyes will be diluted in an aqueous buffer solution. The glycerol solution, which has a higher viscosity than the buffer solution, will emulate protein or DNA solutions that tend to be more viscous than aqueous buffers. By contrast, alcohol will serve as the example of a solution that is less viscous than buffer. Duplication of this document, in conjunction with use of accompanying reagents, is permitted for classroom/ laboratory use only. This document, or any part, may not be reproduced or distributed for any other purpose without the written consent of EDVOTEK, Inc. Copyright 2004 EDVOTEK, Inc., all rights reserved. The Biotechnology Education Company 1-800-EDVOTEK www.edvotek.com

8 EDVO-Kit # S-44 Sci-On Biology Activity One: Volumetric Applications of the Metric System Experiment Procedures The metric system is used in micropipeting. The milliliter (ml) and microliter (µl) are two very useful units of measure in molecular biology. Milli means one-thousandth and Micro means one-millionth. The symbol µ means micro, the prefix for 1 x 10-6 (expressed in scientific notation) or 0.000001 (expressed in decimals). One microliter is abbreviated as µl. The two ways that this would be expressed is 1 µl =.000001 or 1 µl = 1 x 10-6. There are 1,000 µl in 1 milliliter, and 1,000 ml in one liter. 1. Perform the following conversions: In decimals In scientific notation 1 ml = liter 1 ml = liter 1 liter = ml 1 liter = ml 1 ml = µl 1 ml = µl 1 µl = ml 1 µl = ml 10 µl = ml 10 µl = ml 20 µl = ml 20 µl = ml 50 µl = ml 50 µl = ml 100 µl = ml 100 µl = ml 2. How many times greater is a ml than a µl? 3. How many times greater is a liter than a ml? 4. How many times greater is a liter than a µl? 5. Write an application sentence about each of the words in the following vocabulary list: Micropipet Metric system Microliter Viscosity Scientific notation 6. Discuss the importance of the following in scientific experimentation: Using accurate and precise laboratory techniques Making careful observations Recording results in a concise and accurate manner Drawing valid interpretations of results Duplication of this document, in conjunction with use of accompanying reagents, is permitted for classroom/ laboratory use only. This document, or any part, may not be reproduced or distributed for any other purpose without the written consent of EDVOTEK, Inc. Copyright 2004 EDVOTEK, Inc., all rights reserved. The Biotechnology Education Company 1-800-EDVOTEK www.edvotek.com

A Taste of Chemistry Summer Workshop Monell @ Springside School Basic Microchemical Techniques: Micropipetting Tips Micropipettors are precisely calibrated instruments that combine the functions of a pipette and a pump. Disposable plastic tips make micropipettors reusable. To measure small volumes accurately, you will use the.5-10 ul and 20-200 ul adjustable micropipettors. The.5-10 should NEVER be used for volumes greater than 10!l nor the 20-200 for volumes greater than 200!l because this will damage the pipettes. The pushbutton at the top of the micropipettor has two working positions in addition to the fully upright position. The first position is used for picking up liquid, and the second position is used to eject or deliver liquid from the tip. 1. To reach the first position, push the button down using relatively light pressure with your index finger until you meet some resistance. 2. Reaching the second position requires significantly more pressure from your finger, so push the button down with more force to reach this position. 3. Put tips firmly onto the end of the pipettor by gently pushing the barrel of the pipettor into a tip in the rack. Using the pipettor to pick up tips is preferable to picking up a tip with your hand to avoid contaminating the tip with microbes on your hand. (If needed, you can then use your fingers to push the tip gently but firmly onto the barrel of the pipette without touching the end of the tip). 4. Change the volume setting of the scale on the front of the.5-10 to read 7.5 ul 5. Depress the button at the top of the pipettor until you reach the first stop position and feel considerable resistance. Be sure not to push the button down to the second stop position when picking up liquid or your measurement will be grossly incorrect. 6. Keep the button at this position and insert the tip into the red solution. Do not insert the tip too far into the solution or extra drops will cling to the tip and make your measurement inaccurate. 7. With the tip still in the red liquid, SLOWLY release the pressure of your finger and allow the button to return to a full upright position. The red solution will enter the tip. If you release the button too quickly, air bubbles could enter the tip, and the volume of liquid picked up will not be correct. 8. To dispense the liquid: Place the bottom of the tip just at or just above the meniscus of the solution to which you are transferring (or near the bottom of a tube if the tube is empty). 9. Depress the button all the way to the second stop position until all the red liquid is expelled.

10. Use new graduated tips to transfer 5!l and 1!l of the red solution to the 1.5 ml microtube. 11. Always use a new tip for each transfer because residual liquid on or in the tip from a previous transfer could contaminate the new solution or cause inaccurate measurements. 12. There are three maneuvers that you should NEVER try with these pipettors: a. Never measure a volume greater than the maximum volume of a micropipettor, the volume indicated on the pushbutton. b. Never use the micropipettor without a tip. c. Never lay down a pipettor with a tip containing liquid attached. The liquid could run back into the pipette and damage it. Micropipetting Small Volumes: Each person should perform the exercises described below. 1. Use a black marker to label three clear 1.5 ml microtubes with the letter A, B, or C. 2. Set your.5-10 micropipettor to 4 ul and add 4 ul of Solution I (blue) to each microtube, as shown in the chart below. Be sure you use a new tip each time you pipette. Tube Solution I (Blue) Solution II (Red) Solution III (Green) Solution IV (Yellow) A 4 µl 3 µl 1 µl -- B 4 µl 2 µl 1 µl -- C 4 µl 1 µl --.5 µl Total Volume 3. Use new tips to add the indicated volumes of Solution II (red) to each reaction tube. 4. Use new tips again to add the indicated volumes of Solutions III (green) and IV (yellow) to the reaction tubes. 5. Close the tops of the tubes and mix the reagents by flicking each tube with your fingers. 6. To bring the contents to the bottom of each tube, place your tubes and your partner s tubes in a microfuge and pulse spin them for a few seconds as described to the right. Be sure there is a tube across the rotor from each of your tubes for balance. To operate the microfuge, screw or press the top of the rotor on, close the lid, and spin the tubes for three seconds. Centrifuging for short times is accomplished easily by holding down the button on the front panel of the microfuge for the required time and then releasing it to terminate the spin. 7. Remove the tubes from the microfuge. 8. Check the volumes by setting your pipette to the total volume that should be present in the first tube. Then put a new tip on your pipettor, depress the pushbutton to the first stop, put the tip to the bottom of 2

the tube and release the button slowly so all the liquid in the tube enters the tip. The tip should be completely full if the volume is correct. Repeat this for your other tubes. Micropipetting Large Volumes: Each person will each now practice pipetting using his/her 20-200ul micropipettor. 1. Use a black marker to label three new (1.5 ml) microtubes D, E, or F. 2. Pipette the volumes shown in the chart below into the appropriate tubes. Use a new tip for each transfer. Tube Solution I Solution II Solution III Solution IV D 20 µl 30 µl 40 µl 50 µl E 20 µl 20 µl 20 µl 20 µl F 20 µl 40 µl 50 µl 70 µl Total Volume 3. Close the tops of the tubes and mix the reagents by flicking each tube with your finger. 4. Spin the contents to the bottoms of the tubes for 3 sec in the microfuge. 5. Calculate what the volumes of the tubes and check the volumes in these tubes yourself like you did above, to assess your accuracy. 3