BCMB Chapters 34 & 35 DNA Replication and Repair

Similar documents
4. DNA replication Pages: Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

Semiconservative DNA replication. Meselson and Stahl

DNA Replication in Prokaryotes

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription

1.5 page 3 DNA Replication S. Preston 1

DNA. Discovery of the DNA double helix

DNA: Structure and Replication

C A. How many high-energy phosphate bonds would be consumed during the replication of a 10-nucleotide DNA sequence (synthesis of a single-strand)?

Bio 102 Practice Problems Chromosomes and DNA Replication

Chapter 6 DNA Replication

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

DNA Replication and Repair

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

Appendix C DNA Replication & Mitosis

7. 3. replication. Unit 7: Molecular biology and genetics

Sample Questions for Exam 3

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.

Copyright by Mark Brandt, Ph.D.

Structure and Function of DNA

Name Class Date. Figure Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

CHAPTER 5 DNA REPLICATION I: Enzymes and mechanism. Basic Mechanisms of Replication

The Biotechnology Education Company

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is:

The Structure, Replication, and Chromosomal Organization of DNA

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

STRUCTURES OF NUCLEIC ACIDS

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH)

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

First Strand cdna Synthesis

Nucleotides and Nucleic Acids

Translation Study Guide

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

Control of Gene Expression

Complex multicellular organisms are produced by cells that switch genes on and off during development.

Transcription and Translation of DNA

Protein Synthesis How Genes Become Constituent Molecules

Welcome to Pacific Biosciences' Introduction to SMRTbell Template Preparation.

Genetics Module B, Anchor 3

Chapter 18 Regulation of Gene Expression

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

DNA, RNA, Protein synthesis, and Mutations. Chapters

How many of you have checked out the web site on protein-dna interactions?

Chapter 25 DNA metabolism

Chapter 11: Molecular Structure of DNA and RNA

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, b.patel@griffith.edu.

Recombinant DNA Technology

HCS Exercise 1 Dr. Jones Spring Recombinant DNA (Molecular Cloning) exercise:

Basic attributes of genetic processes (replication, transcription, translation)

NAME. EXAM IV I. / 60 December 7, 1998 Biochemistry I II. / 15 BI/CH421, BI601, BI/CH621 III. / 13 IV. / 12. V. / 10(grads) TOTAL /100 or 110

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Nucleic Acid Techniques in Bacterial Systematics

Forensic DNA Testing Terminology

Recombinant DNA and Biotechnology

Molecular Cloning, Product Brochure

AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET

Transcription: RNA Synthesis, Processing & Modification

Replication Study Guide

June 09, 2009 Random Mutagenesis

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Wide range of high-quality enzymes and proteins for molecular biology

Viral Infection: Receptors

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

restriction enzymes 350 Home R. Ward: Spring 2001

To be able to describe polypeptide synthesis including transcription and splicing

Genetics Test Biology I

Page 1. Name:

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

DNA and Forensic Science

Transcription in prokaryotes. Elongation and termination

Concepts and methods in sequencing and genome assembly

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled

NO CALCULATORS OR CELL PHONES ALLOWED

BCH401G Lecture 39 Andres

Bacterial Transformation and Plasmid Purification. Chapter 5: Background

RNA & Protein Synthesis

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

RT rxns. RT rxns TRANSCRIPTME Enzyme Mix (1) 40 µl 2 x 50 µl 5 x 40 µl

GENE REGULATION. Teacher Packet

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

1/12 Dideoxy DNA Sequencing

Q: How are proteins (amino acid chains) made from the information in mrna? A: Translation Ribosomes translate mrna into protein

RNA and Protein Synthesis

DNA Scissors: Introduction to Restriction Enzymes

Name: Date: Period: DNA Unit: DNA Webquest

CCR Biology - Chapter 9 Practice Test - Summer 2012

FINDING RELATION BETWEEN AGING AND

MUTATION, DNA REPAIR AND CANCER

Reverse Transcription System

PRACTICE TEST QUESTIONS

Lecture 6. Regulation of Protein Synthesis at the Translational Level

BIOLOGY TOPICAL: Molecular Biology Test 1

- In , Allan Maxam and walter Gilbert devised the first method for sequencing DNA fragments containing up to ~ 500 nucleotides.

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

Today you will extract DNA from some of your cells and learn more about DNA. Extracting DNA from Your Cells

Biotechnology: DNA Technology & Genomics

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Transcription:

BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair PCR Meselson & Stahl, 1958 Semiconservative DNA replication Each strand of DNA acts as a template for synthesis of a new strand Daughter DNA contains one parental and one newly synthesized strand Fig. 33.14 Meselson and Stahl demonstrated DNA replication is semiconservative Fig. 33.15 Bacteria grown on media supplemented with 15 N. Bacteria then shifted to growth media with 14 N as nitrogen source. Density gradient centrifugation showed, upon shift to 14 N medium, newly synthesized DNA consists of DNA with equal parts 15 N-DNA and 14 N-DNA, Demonstrated semiconservative replication. Density gradient centrifugation of DNA from E. coli grown first grown on 15 N- media then shifted to 14 N-media. Results show that after one generation all DNA was hybrid with equal parts 14 N and 15 N. Demonstrates semiconservative replication. Fig. 33.16 Enzymatic Synthesis of DNA Arthur Kornberg (1955-58) discovered an enzyme that synthesized DNA Experimental Strategy 1) dntps as precursors of DNA 2) sensitive assay to detect newly synthesized DNA; radioactive dntps & acid precipitation of DNA 3) When animal cell extracts proved unsuccesful they turned to E. coli E. coli divides fast (every 20 minutes) and large quantities of cells can be isolated Results of Kornberg experiments (1955-58) E. coli extract + 14 C-labeled dttp (1,000,000 cpm) incubate acid precipitate dttp ~ 1,000,000 cpm dttp 50 cpm First evidence for DNA polymerase! 50 / 1,000,000 cpm 0.005% of radioactivity incorporated into DNA Enzyme purification DNA Polymerase I Took approximately 10 years to purify and characterize 100 kg (~220 lbs) E. coli 500 mg DNA Polymerase I 1

DNA Polymerase I Molecular Weight: 103 kd; monomer Activity (DNA) n residues + dntp (DNA)n+1 + PPi 2 Pi Requirements: datp, dttp, dgtp, dctp Mg++ Primer with free 3 -OH primer Template (single stranded DNA) 5 OH 3 + datp + DNA polymerase 3 T 5 template 5 A OH 3 + PPi 3 T 5 DNA Polymerase is template-directed ** one active site (for polymerase activity) can accommodate all four dntps; the correct dntp is determined by the corresponding base on the template stand. DNA Polymerase I is moderately processive (~20 residues) *Polymerization is in the 5 3 direction E. coli DNA Polymerase I has three different active sites on a single polypeptide chain!! Activities of DNA Polymerase I 1) 5 3 polymerase 2) 3 5 exonuclease (proof-reading) 3) 5 3 exonuclease (editing) Proof-reading: 3 5 Exonuclease Activity 5 ptpapgpcpc-oh 3 paptpcpgpaptpcpgpapt 5 A-C mismatch 3-5 Exonuclease activity 5 ptpapgpcpt-oh 3 paptpcpgpaptpcpgpapt 5 Correct base can then be inserted *DNA polymerase I examines the result of each polymerization before proceeding to the next. Editing: 5 3 Exonuclease Activity Editing 5 papcptpapgpcpc-3 3 ptpgpaptpcpgpg-5 5 ptpapgpcpc-3 3 ptpgpaptpcpgpg-5 5 3 Exonuclease 3 5 Exonuclease Polymerase Structure of the Klenov fragment of DNA Polymerase I Binding of dntp to active site causes conformation shift, yielding tight pocket when correct base is in position (next slide) Fig. 34.3 Small fragment Large fragment (Klenow fragment) 2

Conformation change in DNA polymerase binding site when correct dntp binds Fig. 34.5 In vivo DNA Polymerization Delucia & Cairns, 1969 discovery of DNA polymerase II & III *pol A1 mutant had very low levels of DNA Pol I activity (~1%) 1) Normal multiplication rate 2) similar bacteriophage replication as wild type 3) more easily killed by UV light than parental strain 4) Conclusion: DNA Pol I is involved in DNA repair! *DNA Polymerse III is the replication enzyme in E. coli Activities: 5 3 polymerase 3 5 exonuclease Requirements same as for DNA Pol I >20 protein + DNA Pol III + DNA Pol I required for DNA replication in E.coli BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair PCR Ori C; 245 bp E. coli has a circular chromosome (4.6 million base pairs) Bidirectional DNA replication in E. coli New strands of DNA are synthesized at the two replication forks where replisomes are located Replication rate: ~1000 nucleotides/sec ter 3

E. coli Ori C (245 bp) Cartoon of possible structure of DnaA binding Ori C and DnaB helicase unwinding duplex Fig. 34.11 1) Replication starts at OriC (dnaa gene product binds) 2) Replication proceeds simultaneously in opposite directions 2 replication forks per replicon 3) The replication forks meet at ter (tus: terminator utilization substance binds) Fig. 34.12 Eukaryotic replication DNA Polymerases in E.coli Eukaryotic chromosomes are large linear, double-stranded DNA molecules Replication is bidirectional Multiple sites of initiation of DNA synthesis (versus one site in E. coli) E. coli contains three DNA polymerases - repairs DNA and participates in DNA synthesis by removing & replacing RNA primer - role in DNA repair - the major DNA replication enzyme, responsible for chain elongation E. coli DNA Polymerase III: subunit composition 3 5 exonuclease Sliding clamp of DNA Polymerase III (β subunits) Fig. 34.16/34.15 polymerase Holoenzyme = dimer of two complexes with 10 subunits/complex Each complex synthesizes one daughter strand 4

Elongation of DNA. 3 -OH of 3 nucleotide makes nucleophilic attack on - phosphate in NTP Events at a replication fork 5 3 synthesis Apparent 3 5 synthesis!!!!!!???? see Fig. 34.14/34.13 Is there a 3 5 DNA polymerase that can account for the apparent 3 5 synthesis? No!! There is discontinuous DNA synthesis Reiji Okazaki (1968) showed that a significant amount of newly synthesized DNA exists as small (~1000 nucleotides) fragments called See Fig. 20-10 5 3 3 5 5 3 DNA ligase joins together Okazaki fragments see Fig. 34.15/34.14 Diagram of lagging-strand synthesis DNA synthesis occurs at the replisome: a complex that includes DNA Pol III, the primosome (helicase + primase) + SSB proteins RNA primer synthesized by primase RNA primer synthesized by primase; DNA-dependent RNA polymerase, (product of dnag gene in E.coli) synthesis short RNA primers of ~ 10 nucleotides Joining of Okazaki fragments by DNA Pol I and DNA ligase RECALL: DNA Pol has processivity of ~ 20 5

DNA Replication in E coli 1) DNA supercoil is relieved ahead of & behind replication fork by topoisomerase *cleavage of one (Type I) or two (Type II) strands of DNA *Passage of DNA segment through break * resealing of break 2) Replication fork is site of simultaneous unwinding (by helicase in replisome) and DNA synthesis ( DNA polymerase III+ single stranded binding proteins, SSB) 3) Primase synthesizes down RNA primer DNA Replication in E coli (cont.) Replisome DNA synthesis 4) DNA Pol III synthesizes new DNA in 5 3 direction using parental strand as template 5) DNA Pol I removes RNA primer (5 3 exonuclease) and fills in gap (5 3 polymerase) 6) DNA ligase joins ends of daughter strands (i.e. closes nick) 6

DNA replication in eukaryotes is similar to that in prokaryotes Differences 1) Chromosomes are linear with multiple origins of replication 2) Replication fork moves more slowly Okazaki fragments of 100-200 nucleotides; primer = 10 nucleotides 3) Eukaryotes have at least 4 DNA polymerases:,, (DNA replication); (DNA repair); DNA replication in mitochondria Telomeres and DNA synthesis Fig. 33.22/33.21 The ends of linear chromosomes are sensitive to degradation by DNAse. Also synthesis of lagging strand would be slightly incomplete with each division cycle. 5 3 polymerase activity makes synthesizing end of linear DNA difficult. The ends of linear chromosomes are protected by likely duplex loop formation Eukaryote chromosomes have telomeres at ends Telomere has single-stranded G-rich strand extending from end; makes end more stable by, possibly, duplex loop Telomere formation by Telomerase (in vertebrates) Telomere: hundreds of tandem repeats of hexanucleotide sequence Telomere synthesized by telomerase (special ribonucleoprotein reverse transcriptase polymerase with own RNA template that acts as template to extend leading strand) Telomerase activity low in most cells (high in cancer cells) See Fig. 34.21/34.20 7

BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Dideoxynucleotide Sequencing: the Sanger Method Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair PCR Sanger method for sequencing DNA BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair PCR 8

Error rate for nucleotide insertion in eukaryotes is 10-9 to 10-11 Photodimerization of adjacent thymines induced by UV light Due to good repair system DNA is only biological molecule that is repaired DNA is damaged by UV light, ionizing radiation & chemicals Combined Error Rate E.coli 5 3 DNA Polymerase 10-5 DNA Pol III 3 5 exonuclease 10-7 DNA repair enzymes 10-9 to 10-10 Repair of thymine dimers by DNA photolyase Direct DNA Repair Excision Repair Pathway DNA can be damaged by alkylation, methylation, deamination, loss of heterocyclic bases (depurination or depyrimidization) General excision-repair pathway can repair many of these defects Overall pathway is similar in all organisms 1) Damaged DNA cleaved by endonuclease 2) A 12-13 nucleotide ssdna gap results 3) Gap is filled by DNA Pol I (prokaryotes) or repair DNA Pol (eukaryotes) and nick is ligated by DNA ligase 9

BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair PCR Polymerase Chain Reaction (PCR) Kary Mullis (1984) (see Figs. 41.14 & 41.15) A repetitive method that yields a ~10 6 -fold amplification of a specific DNA sequence. Can detect as little as one DNA molecule!!!! This means you can get DNA sequence from mummies, mammoths, at crime scenes, etc. Polymerase Chain Reaction (PCR) Extra Information After 25 cycles get ~10 6 -fold amplification 10

How is the DNA code deciphered to allow the synthesis of proteins and of other catalytic/information molecules???? Okazaki s experiment Demonstration of discontinuous DNA synthesis Mechanism of DNA ligase in E. coli (From previous slide) (continued from previous page) (continued from previous page) 11

(continued from previous page) General excision-repair pathway Uracil N-glycosylase (human mitochondria) Hydrolytic deamination of cytosine to uracil Uracil in place of cytosine causes incorporation of an incorrect base during replication DNA glycosylases hydrolyze base-sugar N-glycosidic bonds Deaminated bases are then removed and replaced Enzyme is bound to a uracilcontaining nucleotide (green) that has been flipped out of the stacked region of DNA 12

Repair of damage from deamination of cytosine 13