Relationship between sealing ability of Activ GP and Gutta Flow and methods of calcium hydroxide removal



Similar documents
The persistence of different calcium hydroxide paste medications in root canals: an SEM study

Precision Endodontic System. Precision Obturation System. So sophisticated, it s simple

EndoActivator from Tulsa Dental

BioRace NiTi system: biologically desirable apical sizes safely and efficiently

Instruction manual. Safe and efficient NiTi rotary system. Fulfilling the biological requirement for successful endodontics

Case Report(s): Uncomplicated Crown Fractures

Introduction. Abstract

Endo Easy Efficient Sonic Powered Endo Irrigation

BioPure MTAD Antibacterial Root Canal Cleanser Research

Location of the apical foramen and its relationship with foraminal file size

Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

Removal of a silver cone by using clinical microscope and ultrasound: Case report

RICHMOND CROWN - FOR RESTORATION OF BADLY MUTILATED POSTERIOR TEETH - A CASE REPORT

ADA Standards Committee on Dental Products National Standards Status of Projects. Standard # Title of Standard WG Status Activity

JMSCR Volume 03 Issue 05 Page May 2015

Evaluation of Sealing Ability of Three Different Root Canal Sealers (in Vitro Study)

Removal of a fractured instrument with a new extractor: clinical cases

Eliminating effect of Er, Cr: YSGG laser irradiation on the smear layer of dentin

Revascularization of Immature Permanent Teeth With Apical Periodontitis: New Treatment Protocol?

Endodontics. Colleagues for Excellence. Root Canal Irrigants and Disinfectants

Endodontic treatment with MTA apical plugs: a case report

Non-surgical management of a large periapical lesion using a simple aspiration technique: a case report

Jamia Millia Islamia: Performa for CV of Faculty/ Staff Members

Tooth anatomy risk factors influencing root canal working length accessibility

The Treatment of Traumatic Dental Injuries

Universal Endo System Directions for Use. ProTaper

Nd:YAG Laser Irradiation Effect on Apical Intracanal Dentin - A Microleakage and SEM Evaluation

Evaluation of the diffusion capacity of calcium hydroxide pastes through the dentinal tubules

original article Keywords: Sodium hypochlorite. Chlorhexidine. Calcium hydroxide. Endodontic infection. Root canal medication.

ENDODONTOLOGY. CALCIUM PHOSPHATE CEMENT: A NEW SAVIOUR FOR FURCATION PERFORATION? - An in-vitro study INTRODUCTION MATERIALS AND METHODS ABSTRACT

Pain Management for the Periodontal Patient

Cleaning of Oval Canals Using Ultrasonic or Sonic Instrumentation

Postendodontic Tooth Restoration - Part I: The Aim and the Plan of. the procedure.

Clinical Accuracy of Ipex Apex Locator for Measurement of Root Canal Length of Primary Molars

Endodontic treatment outcome is related to treatment expectations of the operator

The main goal of endodontic therapy is to eradicate all vital and necrotic tissue, microorganisms,

Our Mission: Protecting partially. erupted teeth. With Fuji TriageTM from GC. One of many GC solutions for caring for youngsters.

The use of ultrasonics (US) or ultrasonic instrumentation was first introduced to

Analysis of forces developed during root canal filling by different operators

CRACKED TOOTH SYNDROME

Classification of dental cements

The Benefits of Using Arap Locator in Root Canal Treatment

How To Train To Be A Dentist

Mold Preventing I nterior System

Page 1 of 11 BDS FINAL PROFESSIONAL EXAMINATION 2007 OPERATIVE DENTISTRY (MCQs) Model Paper

Feel the Safety and Control

C. Research Proposal 1. Introduction and Specific Aims of the Project 2. Previous Work and Background of the Project

Detergents in CSSD. Wim Renders

Dental Clinical Criteria and Documentation Requirements

Oftentimes, as implant surgeons, we are

ABSTRACT. CFU/ml in case of air water syringe, log 10 CFU/ml in case of high speed air turbine hand-piece and log 10

ULTRASONIC TREATMENT ENDODONTICE

DENT 5351 Final Examination 2007 NAME

Profiles for floors of same height Cerfix Projoint

Stone Developments. Caring for Irish Blue Limestone Products. Irish Blue Limestone Maintenance Guide


Richmond Crown- A Conventional Approach for Restoration of Badly Broken Posterior Teeth

EFFECT OF PASSIVE ULTRASONIC IRRIGATION ON THE REMOVAL OF ROOT CANAL FILLING DURING RETREATMENT PROCEDURES

Contributions regarding FEM for an ultrasonic endodontic device and his appliance in the root canal treatments

Clinical Efficacy of Three Different Electronic Apex Locators in Comparison with Radiographic Working Length Determination

Root canal cleaning and disinfection during chemomechanical preparation relies

Passive ultrasonic irrigation of the root canal: a review of the literature

Root Canal Retreatment: 2. Practical Solutions T.R. PITT FORD AND J.S. RHODES

RBS detergents for laboratories

QUALANOD SPECIFICATIONS UPDATE SHEET Nº 9 Edition page 1/5 COLD SEALING PROCESS

Root canal treatment by means of electronic conductometry without radiographic transoperative verification: a report of five cases

PAINTING OVER HOT DIP GALVANIZED STEEL

The present study reports on the application of silver anode in root canals for disinfection of

Micro-CT evaluation of residual material in canals filled with Activ GP or GuttaFlow following removal with NiTi instruments

Dental-based Injuries

DENTAL TRAUMATIC INJURIES

Universal Crown and Bridge Preparation

Factors Affecting the Long-term Results of Endodontic Treatment

Develop a specialist who is capable of correlation of basic sciences and clinical sciences, and challenge the requirements for certification.

ENDODONTICS. Clinical and Biological Implications in Endodontic Success

Residency Competency and Proficiency Statements

The use of confocal laser scanning microscopy for the study of dentin infection

Jacket crown. Advantage : Crown and Bridge

Protection of Endodontic Filling Remaining After Post Space Preparation.

In order to be useful, a smear must have the following qualities:

Improving the yield of soybean oil extraction process by using of microwave system

Class I and II Indirect Tooth-Colored Restorations

Endodontics. Colleagues for Excellence. Access Opening and Canal Location


Restoring the Endodontically Treated Tooth:Post and Core Design and Material 根 管 治 療 後 牙 齒 的 修 復 :Post and Core 的 設 計 與 材 料

Complications Associated with Tooth Extraction

1- Fatigue-Resistance and Microleakage of CAD/CAM Ceramic and Composite Molar crowns

DENTAL ASSISTING CATEGORIES

Electronic Apex Locators

Deposited on: 8 June 2009

CAO Orthodontic Assistant Permit (OAP) Staff Training Course FAQ s

Statement on Lasers in Dentistry ADA Council on Scientific Affairs

TechCut 4 Precision Low Speed Saw

The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation

Foundation Revolutionary Bone Augmentation Material. Thinking ahead. Focused on life. Regional Partner

Dental Implant Options in Atrophic Jaws

Pre-Lab Questions. 1. What is cell theory? 2. What do all cells contain? 3. What is a prokaryote? 4. What is a eukaryote? 5. What is an organelle?

Analysis of pulp prognosis in 603 permanent teeth with uncomplicated crown fracture with or without luxation

Mani Silk: A new and novel means of predictable canal shaping

Transcription:

Original Article Relationship between sealing ability of Activ GP and Gutta Flow and methods of calcium hydroxide removal Vineeta Nikhil, Vijay Singh 1, Simranjeet Singh 2 Department of Conservative Dentistry and Endodontics, Subharti Dental College, Meerut, 1 DAV Dental College, Yamunanagar, 2 Post Graduate Institute, Oral Health Sciences Center, Chandigarh, India A b s t r a c t Aim: To evaluate the effect of method of calcium hydroxide intracanal dressing removal, on sealing ability of Gutta Flow and Activ GP. Materials and Methods: Seventy extracted mandibular premolars were sectioned at CEJ and canals were prepared with profile 4% rotary file till #40. Canals were filled with calcium hydroxide, coronally sealed with Cavit G and stored at 37 C. After 7 days, samples were divided on the basis of calcium hydroxide removal method (Master apical file, Navi Tip FX, and F File) and obturating material (Activ GP and Gutta Flow). Three coats of nail polish were applied except 2 mm around apical foramen and samples were immersed in India ink dye, sectioned, and observed under stereomicroscope for microleakage. Results: The results were statistically analyzed with one way ANOVA-F with Tukey HSD test with the null hypothesis set as 5%. Conclusions: The seal of the canal system was adversely impacted by residual calcium hydroxide when Activ GP and Gutta Flow were used as obturating material and the sealing ability of Activ GP and Gutta Flow was better when MAF was used for removal of calcium hydroxide than F file or Navi tip FX. Keywords: Activ GP; calcium hydroxide; F file; Gutta Flow; Navi tip Fx; sealing ability INTRODUCTION Bacteria and their products play an essential role in pathogenesis of pulpo-periapical diseases. [1] A longstanding endodontic infection allows bacteria to propagate to the entire root canal system, including ramifications, isthmuses, apical deltas, and dentinal tubules. In these locations, bacteria may remain viable even after complete chemo-mechanical preparation of the root canal and may multiply in the period between treatments. Various intracanal medicaments have been advocated to prevent this occurrence, for example, phenols, iodine, potassium iodide, antibiotic paste, calcium hydroxide, propolis, [2] etc. Among these, calcium hydroxide ( ) is most indicated and frequently used in clinical practice. The clinical success of this material is mainly attributed to its alkaline ph and depends on its ability to rapidly disassociate into hydroxyl ions and calcium ions. Tronsted et al. [3] demonstrated the diffusion of calcium ions through the dentin to the external surface. is advocated as an interappointment Address for correspondence: Dr. Vineeta Nikhil, Address- Flat # 1, R Block, Subharti University, Subharti Puram, NH-58, Delhi, Haridwar, Meerut Bypass, Meerut, Uttar Pradesh, India. E-mail: drvineeta_dav@rediffmail.com Date of submission : 09.05.2011 Review completed : 21.07.2011 Date of acceptance : 30.08.2011 endodontic therapeutic dressing because of its antibacterial effect on most of the microorganisms identified in the root canal system. [4] Sjogren et al. found that dressing for 7 days efficiently eliminated bacteria that survive root canal instrumentation. Calt and Serper [5] reported that when was incompletely removed from root canal, sealer did not penetrate into the dentinal tubules. Therefore, its complete removal is necessary for the success of the root canal therapy. The removal of has been investigated using various products and techniques such as irrigants (Citric acid, EDTA NaOCl and distilled water), use of Master Apical File (MAF) along with these irrigants, [6] use of Navi tip FX (Ultradent Products Inc, South Jordan, UT.) and use of F File (Plasticendo). A new silicone based sealer Gutta Flow (Coltene Whaledent, Langenau, Germany), has been introduced as alternative root filling material. Gutta flow is the cold fluid obturation system, which combines sealer and Gutta Percha (GP) in single material. It consists of a polydimethylsiloxane matrix Access this article online Quick Response Code: Website: www.jcd.org.in DOI: 10.4103/0972-0707.92605 41

that is highly filled with very finely grounded GP. Gutta Flow has very promising properties because of its insolubility, biocompatibility, postsetting expansion, great fluidity, and providing thin film of sealer. [7] The Activ GP precision obturation system (Brasseler USA, Savannah, GA) is a new glass-ionomer (GI)-based obturation system. As inadequate bonding between GP and GI is a drawback of the GI-based sealer, thus, to enhance the GP GI bonding, Activ GP has 2 m coating of GI particle in its surface; these particles are also incorporated into the body of the cone. Activ GP gives the advantage of monobloc obturation (true single cone technique), and glass ionomer cements (biocompatibility, adhesion, fluoride release and antimicrobial activity). [8] Thus, the aim of this study was to evaluate the effect of various methods (MAF, Navi Tip FX, and F File) used for removal of intracanal dressing from canals, on sealing ability of these new obturating materials, that is, Gutta Flow and Activ GP. MATERIALS AND METHODS Seventy noncarious, human, extracted mandibular premolars were radiographed in proximal view to exclude any teeth with more than one canal, selected and sterilized. The teeth were sectioned at CEJ using a Diamond disc and water spray. The patency of the canal was determined and ensured by passing a #10 K file 2 mm out of the apical foramen and working length for each root was established 0.5 mm short of the apex. Glide path was created for the use of the rotary file with 20 K-file. Root canals were prepared till #40 with 4% tapered profile with alternate use of 5% NaOCl and 10% citric acid and final irrigation was done with distilled water. Among 60 samples, the root canals were dried with #40 sterile absorbent points and were filled with and chlorhexidine paste using lentulospiral. Coronal seal was obtained with Cavit G and the samples were stored for 7 days at 37 C at 100% relative humidity. Then these samples were divided into three experimental groups of 20 samples each on the basis of method of removal of. 1. GR 1 -Using MAF and irrigation with 5% NaOCl and 10% citric acid and final irrigation with distilled water. 2. GR 2 -Using Navi tip FX and irrigation with 5% NaOCl and 10% citric acid and final irrigation with distilled water. 3. GR 3 -Using F file and irrigation with 5% NaOCl and 10% citric acid and final irrigation with distilled water. Each group was further divided into two subgroups (a and b), on the basis of obturating material Activ GP (1a, 2a, and 3a) and Gutta Flow (1b, 2b, and 3b), respectively. Activ GP and Gutta Flow were mixed according to manufacturer s directions, GP cones were coated with appropriate sealer and canals were obturated. Extra GP were sheared off at the coronal end with heated ball burinsher. Remaining ten samples (group-4) were used as the control group in which no calcium hydroxide dressing was given and among these five samples were obturated with Activ GP (GR 4a) and remaining five were obturated with Gutta Flow (GR 4b). All samples were sealed with Cavit G, 3 coats of nail polish was applied except 2 mm around apical foramen and immersed in India ink dye for 5 days. For the microleakage observation these samples were sectioned bucco-lingually with chiselmallet and then observed under the stereomicroscope. RESULTS The mean values and the standard deviations for microleakage were calculated for each group and analyzed using the oneway ANOVA-F test as shown in Table 1 for all the groups. The mean value of microleakage in mm for control groups was lower (1.48) than the mean values of experimental groups. Among the experimental groups, maximum microleakage was observed with gr-2, followed by gr-3 and gr-1. Among all the experimental groups, the maximum microleakage value was recorded for Group 2a where the Navitip Fx was used for removal of calcium hydroxide and obturation was done with Activ GP with the mean value of 2.87 and standard deviation of 0.5172. On the other hand, the group 1b displayed the minimum microleakage value where the MAF was used for the removal of calcium hydroxide and obturation was done with the Gutta Flow the mean value of 1.61 and standard deviation of 0.890 348. Intergroup comparison was conducted by using the multiple comparison tests (Tukey s HSD test) which revealed statistical significant differences among the groups [Table 2]. The Tukey s highly significant difference value was 0.6124 for groups 1a, 2a, 3a, and 4a, 0.7318 for 1b, 2b, 3b, and 4b while 0.998 for 1, 2, 3, and 4. Table-1 Mean microleakage in mm and standard deviation of various groups. Groups ACTIV GP GUTTA FLOW Mean Std. deviation Mean Std. deviation Group 1 1.815 0.58063 1.61 0.890348 Group 2 2.87 0.517179 2.645 1.096276 Group 3 2.37 0.57133 2.505 0.984701 Group 4 0.495 0.385903 0.985 0.66591 Table 2: Showing intergroup comparison of various groups Mean difference among the groups Group 1a, 2a, 3a and 4a Group 1b, 2b, 3b and 4b Group 1, 2, 3 and 4 Tukey s HSD 1a-2a 1a-3a 1a-4a 2a-3a 2a-4a 3a-4a 1.055 0.55 1.32 0.5 2.375 1.875 0.6124 1b-2b 1b-3b 1b-4b 2b-3b 2b-4b 3b-4b 1.035 0.895 0.625 0.14 1.66 1.52 0.7318 1-2 1-3 1-4 2-3 2-4 3-4 1.935 1.59 1.495 0.345 3.88 3.5 0.998 42

All the groups exhibited highly statistically significant difference except 1a-3a and 2a-3a, 1b-4b, 2b-3b, and 2-3, where values were found less than the Tukey s HSD value respectively but when student t-test was applied the P values were significant for group 1a 3a (P=0.004) and 1b 4b (P=0.0009). When student t-test was applied for various a groups (1a+2a+3a) and b groups (1b+2b+3b) of experimental samples the value was statistically insignificant (P=0.315 272). DISCUSSION Studies have demonstrated that bacteria may be viable in the root canal even after vigorous mechanical instrumentation and use of irrigants with the antimicrobial activity, which may lead to the persistent or secondary intraradicular infection and therefore to treatment failure. Thus, the use of an intracanal medication with antimicrobial activity between therapy sessions has been recommended to eliminate possible persistent microorganism particularly in cases of pulpal necrosis with periradicular bone loss. has antimicrobial activity as it maintains the high concentration of OH ion that inactivate the bacterial enzymes of cytoplasmic membrane, influence chemical transport and alter the availability of nutrients thus, causing toxic effect on the bacterial cell. It acts by damaging bacterial DNA and protein denaturation. [9,10] In vitro studies have shown that remnants of can hinder the penetration of sealer into dentinal tubules which ultimately affects the adhesion of root canal sealer to the dentin that markedly increase the apical leakage of root canal treated teeth. [11] In addition, potential interaction of with zinc oxide eugenol sealers makes them brittle and granular. [12] Thus, complete removal of from root canal before obturation becomes mandatory. [13] removal before final obturation is routinely accomplished either by irrigation with NaOCl or saline or instrumentation in a reaming motion. Margeloas et al. [12] has shown that using 10% citric acid and NaOCl in combination with instrumentation by mechanical means improve the removal efficiency. Wiseman et al. [14] used sonic and passive ultrasonic irrigation for removal and concluded that complete removal of cannot be accomplished with both the methods; however, the combination of rotary instrumentation and passive ultrasonic activation results in significantly lower amounts of remnants in the canal compared with sonic irrigation. Other methods include the use of Navi tip FX (Ultra dent) along with irrigants NaOCl and 10% citric acid and followed by distilled water. [15] and CanalBrush and ultrasonic agitation of NaOCl. [16] can also be removed with use of F file. Machado-Silveiro LF, [17] in their study on decalcification of root canal dentine by citric acid, EDTA and sodium citrate, concluded that citric acid at 10% was the most effective decalcifying agent, followed by 1% citric acid, 17% EDTA, and 10% sodium citrate. Similarly Zehnder [18] stated that citric acid appears to be slightly more potent at similar concentration than EDTA when used as demineralizing agents in the root canal. Nandini et al. [19] retrieved the calcium hydroxide intracanal medicament after 7 days using 17% EDTA or 10% citric acid in combination with ultrasonic agitation. They performed the volume analysis using spiralcomputed tomography. Their result showed that 10% citric acid showed better removal efficiency than 17% EDTA for Metapex. Farhad AR [20] came out with an opinion that when a resin-based sealer is used for the obturation of the root canal system, it is better to use a citric acid irrigant instead of EDTA to remove the smear layer and to improve the apical seal. All these findings motivated us to use 10% citric acid instead of 17% EDTA that is most commonly used demineralizing agent in this study. India ink was used in this study because methylene blue which is most commonly used in the dye penetration test is not compatible with. Optical density of the methylene blue solution was decreased by 73% with which may result in unreliable results. [21] In this study, when the mean microleakage value of control group (1.48) was compared with experimental groups (3.425, 5.515, and 4.875) the value was statistically highly significant [Table 2]. That supports the view that calcium hydroxide when used as intracanal dressing decreases the sealing ability of Activ GP and Gutta Flow and is in accordance with the view of Kim SK. [11] da Silva et al. [22] and Balvedi et al. [23] used different types of vehicles for mixing and found that when various methods were used to remove, the dentine surface remained equally covered by, regardless of the vehicle used. Residual may block opening of lateral canals and dentinal tubules thus reducing the penetration of the sealer into them. [24] In general, the dentinal tubules are considered to have a diameter of 2 to 5 m. [25] Several studies reported that particles vary from 0.5 to 20 m. Dentin is substrate whereas is a material. The size of dentinal tubule correlates with the size of particles. According to Komabayashi et al. [25] the cumulative percentage of particles of between 0.5 and 2 m was 63%. Therefore, in theory, the geometry of these small particles makes it possible for to enter the open dentinal tubules. When the mean values for microleakage for Group 1, Group 2, and Group 3 were compared, the Tukey s HSD test showed highly significant difference between group 1 2 (1.935) and group 1 3 (1.59) but not between group 2 3 (0.345). This means that microleakage was significantly less when MAF was used for removing than when Navi tip FX and F file were used for removal. According to 43

Kenee et al. [26] while irrigant alone could not penetrate well into apical third, mechanical means of removal showed significantly better result, possibly due to their ability to reach the apical third of the canal. Kuga et al. [27] stated close proximity of the instrument to the walls and apex is an important factor in cleaning the canal. It is obvious that profile instrument which was MAF for the prepared canal entered apical third directly, and to full extent as the canal shape matched the file shape and the instrument stiffness had also helped accessibility to the apical region, in the presence of. Navi tip FX had equidiameter bristles throughout the length except at the apex which was bristle free. This made Navi tip FX different in shape than prepared canal causing difficulty in accessing the apical part of the canal. This would have led for improper removal of by Navi tip FX that ultimately affected the sealing ability of sealer. The endodontic polymer-based rotary finishing file which had a unique design with diamond abrasive embedded in non toxic polymer, enabled the file to agitate NaOCl, removed remaining dentinal wall debris without enlarging the canal. Although these instruments had 0.04 taper thus it could reach the apical part of preparation but as this instrument comes only in 20 no. file size, its size did not correspond to the preparation size. The F file might had reached the apical terminus of the preparation but would had not contacted well with root canal walls that may be the reason that microleakage when F file was used to remove the was less than when Navi tip FX was used, but was more than when MAF was used for the removal of, providing more clean surface for sealers. The mean values for Group 1a, Group 2a, and Group 3a were 1.815, 2.87, 2.37, respectively [Table 1]. When these groups were compared, a statistical value was significant for Group 1a: Group 2a and Group 2a: Group 3a, but the results were insignificant for Group 1a: Group 3a [Table 2]. When comparisons were drawn between Group 1b, Group 2b and Group 3b the mean values were 1.61, 2.645 and 2.505 mm, respectively [Table 1]. Statistically the results were significant for Group 1b: Group 2b and for Group 1b: Group 3b, But the results were insignificant for Group 2b: Group 3b [Table 2]. The explanation may be that due to better removal of by MAF or F file there was better bonding of Activ GP and Gutta Flow in comparison when Navi tip FX was used for removal of dressing. As we know Activ GP is GIC based sealer and for the adequate bonding with root canal wall or to form tertiary monobloc which is characteristic feature of the Activ GP [28] all the root canal surface should be cleaned and smear layer should be removed. Similarly the Gutta flow contains finely ground powder plus the silicone based matrix and for Gutta Flow the root canal must be free of any sort of residue either solid or liquid which may prevent the Gutta Flow from curing, thus thorough cleaning of the root canal is again necessary before the obturation. That is why as MAF was best in providing clean canal after removal of dressing followed by F file and Navi Tip FX the microleakage estimated was also less for MAF samples than F file and Navi Tip FX. Friction created between the brush bristles and the canal irregularities might result in dislodgement of the radiolucent bristles in the canal that are not easily recognized by clinician even with use of surgical microscope. This might further affect the sealing of root canal. [15] When in the experimental group mean values of microleakage of samples with Gutta flow and Active GP was compared student t-test showed the insignificant value (P=0.315272), that means if the methods of removal of remains same there is no statistically difference in microleakage values between Gutta flow and Active GP. CONCLUSION Within limitations of this laboratory study, the findings showed that the seal of the canal system was adversely impacted by residual when Activ GP and Gutta Flow were used as obturating material and the removal of from root canal was better when MAF was used as compared to that by F file or Navi Tip FX. Before extrapolating the results of the present study to be deemed clinically significant, studies are needed to be undertaken with larger sample size. More over as Activ GP and Gutta flow are relatively new materials, the effect of intracanal dressing of on sealing ability of these materials should also be tested in vivo models. REFERENCES 1. Grossman LI, Oliet S, Carlos DR. Endodontic practice. 11th ed. Philadelphia; Lea and Febiger; 1991. p. 179-227. 2. Victorino FR, Bramante CM, Zapata RO, Casaroto AR, Garcia RB, de Moraes IG, et al. Removal efficacy of propolis paste dressing from the root canal. J Appl Oral Sci 2010;18:621-4. 3. Tronstad L, Andersen JO, Hasselgren G. ph changes in dental tissue after root filling with calcium hydroxide. J Endod 1981;17:17-21. 4. Sjogren U, Figdor D, Spangberg L. The antimicrobial effect of calcium hydroxide as short term intracanal dressing. Int Endod J 1991;24: 119-25. 5. Semra C, Serper A. Dentinal tubule penetration of root canal sealers after root canal dressing with calcium hydroxide. J Endod 1999;25: 431-3. 6. Salgado RJ, Moura-Netto C, Yamazaki AK, Cardoso LN, de Moura AA, Prokopowitsch I. Comparison of different irrigants on calcium hydroxide medication removal: Microscopic cleanliness evaluation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:580-4. 7. Coltene whaledent. obturating material. Available from: http://www. Guttaflow.com. [Last accessed on 2011 May 09]. 8. Fransen JN, He J, Glickmen GN, Rios A, Shulman JD, Honeyman A. Comparitive assessment of Activ GP/Glass Ionomer sealer, Resilon/ Epiphany and Gutta-percha/AH-plus obturation. A Bacterial leakage study. J Endod 2008;34:725-7. 9. Siqueira JF Jr, Lopes HP. Mechanism of antimicrobial activity of calcium hydroxide: A critical review. Int Endod J 1999;32:361-9. 10. Figdor D, Sjogren U, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short term intracanal dressing. Int Endod J 2008;34: 866-70. 11. Kim SK, Kim YO. Influence of calcium hydroxide intracanal medication on apical seal. Int Endod J 2002;35:623-8. 12. Margelos J, Eliades G, Verdelis C, Palaghias G. Interaction of calcium hydroxide with Zinc Oxide Eugenol type sealers: A potential clinical 44

problem. J Endod 1997;23:43-8. 13. Ricucci D, Langeland K. Incomplete calcium hydroxide removal from root canal: A case report. Int Endod J 1997;30:418-21. 14. Wiseman A, Cox TC, Paranjpe A, Flake NM, Cohenca N, Johnson JD. Efficacy of sonic and ultrasonic activation for removal of calcium hydroxide from mesial canals of mandibular molars: A microtomographic study. J Endod 2011;37:235-8. 15. Gu L, Kim JR, Ling J, Choi KK, Tay FR, Pashley DH. Review of contemporary irrigant agitation techniques and devices. J Endod 2009;35:791-802. 16. Taşdemir T, Celik D, Er K, Yildirim T, Ceyhanli KT, Yeşilyurt C. Efficacy of several techniques for the removal of calcium hydroxide medicament from root canals. Int Endod J 2011;44:505-9. 17. Machado-Silveiro LF, Gonza lez-lo pez S, Gonza lez-rodrı guez MP. Decalcification of root canal dentine by citric acid, EDTA and sodium citrate. Int Endod J 2004;37:365-9. 18. Zehnder M. Root Canal Irrigants. J Endod 2006;32:389-98. 19. Nandini S, Velmurugan N, Kandaswamy D. Removal Efficiency of Calcium Hydroxide Intracanal Medicament with Two Calcium Chelators: Volumetric Analysis Using Spiral CT. An In Vitro Study. J Endod 2006;32:1097-101. 20. Farhad AR, Barekatain B, Koushki AR. The effect of three different root canal irrigant protocols for removing smear layer on the apical microleakage of AH26 sealer. Iran Endod J 2008;3:62-7. 21. Wu MK, Kontakiokis EG, Wesselink PR. Decoloration of 1% Methylene Blue solution in contact with dental filling material. J Dent 1998;26:585-9. 22. da Silva JM, Andrade Junior CV, Zaia AA, Pessoa OF. Microscopic cleanliness evaluation of the apical root canal after using calcium hydroxide mixed with chlorhexidine, propylene glycol, or antibiotic paste. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111: 260-4. 23. Balvedi RP, Versiani MA, Manna FF, Biffi JC. A comparison of two techniques for the removal of calcium hydroxide from root canals. Int Endod J 2010;43:763-8. 24. Goldberg F, Artaza LP, Silvio AC. Influence of calcium hydroxide dressing on the obturation of simulated lateral canals. J Endod 2002;28:99-101. 25. Komabayashi T, D souza RN, Dechow PC, Safavi K, Spangberg LS. Particle size and shape of calcium hydroxide. J Endod 2009;35:284-7. 26. Kenee DM, Allemang JD, Johnson JD, Hellstein J, Nichol BK. A quantative assessment of efficacy of various calcium hydroxide removal techniques. J Endod 2006;32:563-5. 27. Kuga MC, Tanumaru-Filho M, Faria G, So MV, Galletti T, Bavello JR. Calcium Hydroxide Intracanal Dressing Removal with Different Rotary Instruments and Irrigating Solutions: A Scanning Electron Microscopy Study. Braz Dent J 2010;21:310-4. 28. Franklin TR, Pashley DH. Monoblock in root canals: A Hypothetical or a Tanigble goal. J Endod 2007;33:391-8. How to cite this article: Nikhil V, Singh V, Singh S. Relationship between sealing ability of Activ GP and Gutta Flow and methods of calcium hydroxide removal. J Conserv Dent 2012;15:41-5. Source of Support: Nil, Conflict of Interest: None declared. Author Help: Reference checking facility The manuscript system (www.journalonweb.com) allows the authors to check and verify the accuracy and style of references. The tool checks the references with PubMed as per a predefined style. Authors are encouraged to use this facility, before submitting articles to the journal. The style as well as bibliographic elements should be 100% accurate, to help get the references verified from the system. Even a single spelling error or addition of issue number/month of publication will lead to an error when verifying the reference. Example of a correct style Sheahan P, O leary G, Lee G, Fitzgibbon J. Cystic cervical metastases: Incidence and diagnosis using fine needle aspiration biopsy. Otolaryngol Head Neck Surg 2002;127:294-8. Only the references from journals indexed in PubMed will be checked. Enter each reference in new line, without a serial number. Add up to a maximum of 15 references at a time. If the reference is correct for its bibliographic elements and punctuations, it will be shown as CORRECT and a link to the correct article in PubMed will be given. If any of the bibliographic elements are missing, incorrect or extra (such as issue number), it will be shown as INCORRECT and link to possible articles in PubMed will be given. 45