The Basics of a Hypothesis Test

Similar documents
Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Lesson 9 Hypothesis Testing

Chapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means

Hypothesis testing - Steps

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Estimation of σ 2, the variance of ɛ

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

Simple Regression Theory II 2010 Samuel L. Baker

How To Test For Significance On A Data Set

Chapter 7 Section 7.1: Inference for the Mean of a Population

Hypothesis Testing --- One Mean

Difference of Means and ANOVA Problems

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct

Hypothesis Testing. Hypothesis Testing

DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript

Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test.

Correlational Research

HYPOTHESIS TESTING: POWER OF THE TEST

Introduction to Hypothesis Testing

WISE Power Tutorial All Exercises

Descriptive Statistics

Independent t- Test (Comparing Two Means)

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

The Dummy s Guide to Data Analysis Using SPSS

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

Using Stata for One Sample Tests

Point and Interval Estimates

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

HYPOTHESIS TESTING WITH SPSS:

Hypothesis testing. c 2014, Jeffrey S. Simonoff 1

Hypothesis Testing: Two Means, Paired Data, Two Proportions

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

In the past, the increase in the price of gasoline could be attributed to major national or global

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

Statistics Review PSY379

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

Regression Analysis: A Complete Example

1 Hypothesis Testing. H 0 : population parameter = hypothesized value:

Comparing Means in Two Populations

Two Related Samples t Test

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

5.1 Identifying the Target Parameter

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Independent samples t-test. Dr. Tom Pierce Radford University

Unit 26 Estimation with Confidence Intervals

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Stats Review Chapters 9-10

Study Guide for the Final Exam

Review. March 21, S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results

Hypothesis Testing for Beginners

Introduction to Hypothesis Testing OPRE 6301

Comparing Multiple Proportions, Test of Independence and Goodness of Fit

p ˆ (sample mean and sample

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Two-sample inference: Continuous data

3.4 Statistical inference for 2 populations based on two samples

Math 108 Exam 3 Solutions Spring 00

Final Exam Practice Problem Answers

2 Sample t-test (unequal sample sizes and unequal variances)

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Chapter 2 Probability Topics SPSS T tests

1.5 Oneway Analysis of Variance

Statistics 2014 Scoring Guidelines

5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Math 251, Review Questions for Test 3 Rough Answers

6: Introduction to Hypothesis Testing

Lecture Notes Module 1

Week 4: Standard Error and Confidence Intervals

Online 12 - Sections 9.1 and 9.2-Doug Ensley

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Confidence intervals

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.

CHAPTER 14 NONPARAMETRIC TESTS

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Principles of Hypothesis Testing for Public Health

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!

How To Check For Differences In The One Way Anova

Results from the 2014 AP Statistics Exam. Jessica Utts, University of California, Irvine Chief Reader, AP Statistics

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

Simple Linear Regression Inference

Mind on Statistics. Chapter 12

A full analysis example Multiple correlations Partial correlations

Chapter 7. One-way ANOVA

Data Analysis Tools. Tools for Summarizing Data

Transcription:

Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A point estimate from a sample Knowledge of a sampling distribution A Null hypothesis A probability level of being wrong that we are comfortable with, called! All via a rare event approach we want to see how rare it is that we drew a random sample and got our estimate if the true value was really that specified in the Null 2 Newspaper Print Problem (BLACKNESS.xls) We can use software to help us analyze the data The production department of the Springfield Herald newspaper has embarked on a quality improvement effort and the first project is the blackness of the newspaper print. Blackness is measured on a standard scale in which the target value is 1.0. A desirable level is that the average is at least.97. A random sample of 50 newspapers have been selected We want to determine if the average blackness is different from.97, use alpha =.05 3 Most often, we use software to give us basic statistical data for our analyses I want you to start your analysis with basic descriptive statistics What do you see? The distribution looks curiously bi-modal The mean is.959 Median is.985 Standard deviation is.156 CV =.156/.959*100 = 16.3 95% C.I. =.959 ±.044 =.915 to 1.003 4

Test for the Blackness of Newspaper Print Test If the sampling distribution for n=50 has a mean level of.970, µ or the Hypothesized value I could find out how rare an event it was to take a sample of 50 and get a mean value of.959 I can test to see how my sample compares to the hypothesized population different from Greater than or Less than Two-tailed One-Tailed Upper One-tailed Lower 5 Ho: µ=.970 Ha: µ!.970 I will check if it is different I calculate a z or t-score to see how far away it is from the hypothesized value t* = (.959.970)/.022 t* = -.011/.022 t* = -.500 Our sample estimate is.5 standard deviations below the mean in relation to the sampling distribution. This is not so unusual. SE =.156/(50).5 =.022 6 What is a Test? Here is our Strategy: Null and Alternative We are going to use a rare-event approach to make an inference from our sample to a population We define two hypotheses Null hypothesis the hypothesis that will be accepted unless we have convincing evidence to the contrary - we seek to reject the Null Alternative aka as the Research. We look to see if the data provide convincing evidence of its truth. We hope for the alternative, but we are reluctant to accept it outright. 7 The Null is based on expectations of no change, nothing happening, no difference, the same old same old In many ways it is a straw man (or person) and in contrast to the rare event In most cases we want to reject the null hypothesis The Alternative is more in line with our true expectations for the experiment or research The sample value is not equal to the hypothesized value, or It is greater than the hypothesized value, or It is less than the hypothesized value 8

The logic of a Test The logic of a Test We assume our sample estimate comes from a population with a parameter as stated under the null hypothesis We can compare our sample estimate to this population parameter to see how likely it is that our sample comes from a sampling distribution from this population The comparison is made via a Test Statistic To do this we calculate a Test Statistic This is a z-score (or a t-score) based on: Ho: µ = some value or P = some value The sample estimate of the standard deviation, s The Standard Error of the sampling distribution for our estimator, s/(n).5 9 z* = ( x " µ)! X z* = ( p " P) # P ( x! µ ) t* = s X 10 The components of a Test The components of a Test Ho: Ha: Assumptions Test Statistic Rejection Region Calculation: Conclusion: Ho: µ =.970 Ha: µ ".970 2-tailed n= 50, # unknown, use t t* = (.959.970)/.022! =.05,.05/2, 49 d.f., t = ± 2.010 t* = -.50 t* > t.05/2, 49 df -.50 > -2.010 Cannot Reject Ho: =.970 11 Set up the Null Ho: µ =??? Ho: µ =.970 some use " or # with a one-tailed test Set up the Alternative It takes up one of three forms Ha:!.970 Two-tailed Ha: >.970 One-tailed, upper tail Ha: <.970 One-tailed, lower tail Ha: ".970 Two-tailed 12

The Alternative The Assumptions of the Test A one-tailed test of hypothesis is one in which the alternative hypothesis is directional, and includes either the < symbol or the > symbol. A two-tailed test of hypothesis is one in which the alternative hypothesis does not specify a particular direction; it is different. It will be written with the " symbol. We gain by specifying a one-tailed test - more knowledge is usually better in statistics Proportion Is the sample size large? Yes No If Yes, use the normal approximation to the binomial z* = ( p " P) # P If No, use the binomial distribution 13 14 The Assumptions of the Test! The Test Statistic ( x! µ ) t* = s X Mean Is sigma known? Yes No Is sample size small? Yes No If Yes, use the known! for the standard error and use z If No, use the sample estimate, s, for the standard error, and use t If n is small, especially if! is unknown, we have to worry about whether the population is distributed as normal 15 Let t* equal the calculated test statistic The value for µ will come from the Null If we don t know $ we use the sample estimate of s to calculate the standard error as (s/n.5 ) This t* represents a z-score of our sample compared to the sampling distribution of the mean, if the null hypothesis is true We want to see how far away our sample estimate is from the null hypothesis population mean t* = (.959!.970).156 50 =!.50 16

The Critical Value and the Rejection Region The Critical Value and the Rejection Region The rejection region is the set of possible values of the test statistic for which the null hypothesis will be rejected. So if the calculated test statistic falls within the rejection region, we reject Ho Alpha (%) is the probability level at which you are willing to be wrong when rejecting Ho. The value at the boundary of the rejection region is called the Critical Value We establish the Critical Value linked to! and the type of test (1 or 2-tailed) and compare our Test Statistic to this value 17 We look to see where t* falls in relation to the t- distribution If it lies in the Rejection Region, in one of the tails, it is possible that it came from that hypothesized distribution -- but not very likely Because it is unlikely, I am willing to reject the Null We need to set the level of alpha and the type of test (1 or 2-tailed) a priori 18 More on the Rejection Region More on the Rejection Region I want to pick an alpha value far out in the tail of the sampling distribution So if I find a difference, I can be reasonably sure that my sample is not part of the sampling distribution specified under the null hypothesis % represents the probability that my sample mean actually comes from the hypothesized sampling distribution, but I m going to say it doesn t This is called a Type I Error The probability of committing a Type I Error is the probability of rejecting Ho when Ho is true 19 For this problem, %=.05 Next I want to find a t-value that will correspond with an overall % =.05, with n-1 degrees of freedom This is a two-tailed test as specified in the alternative hypothesis Ha: µ!.970 So if % =.05, we need to split this probability level in the upper and lower tail of the sampling distribution, much like we do for a confidence interval If it were a one-tailed test, we would put all of alpha into one tail 20

Rejection Region Look at it in pictures So I look for a t-score that corresponds to an overall probability of.05 In the t-table this is a value relating to % =.05 for two-tails, or.025 in one tail d.f. = 49 The t-value from the table is 2.010 The values of -2.010 and 2.010 are the critical values which marks the rejection region So our Rejection Region is: Any test statistic value < 2.010 or > 2.010 21 Our test statistic is t* = -.50 The Critical Values that mark the rejection region are -2.010 and 2.010 If our test statistic is in the Rejection Region, we would consider it far enough away from the Null Value To reject the Null Which makes the Alternative more plausible Otherwise, we Fail to Reject t*=-.50-2.010 2.010 My test statistic does not fall in the rejection region, therefore I cannot reject the Null 22 So what do I conclude? The components of a Test I don t have any evidence that the average blackness of the print is different from.97. It was not so unusual to draw a random sample of 50 papers and get an average of.959 given the true value is.97 So I can t conclude I have a problem from this sample.but I could be wrong!!! 23 Ho: Ha: Assumptions Test Statistic Rejection Region Calculation: Conclusion: Ho: µ =.970 Ha: µ ".970 2-tailed n= 50, # unknown, use t t* = (.959.970)/.022! =.05,.05/2, 49 d.f., t = ± 2.010 t* = -.50 t* > t.05/2. 49 df -.50 > -2.010 Cannot Reject Ho: =.970 24

Test from JMP What if this were a one-tailed test? Here is the output from JMP You would be asked to specify a Hypothesized Value, Ho An alpha level,.05 Then it gives the results of a one or two-tailed test What if we multiplied blackness by 100? 25 Let s say that the Alternative was: Ha: µ <.97 % =.05 The test statistic remains the same t* = -.50 Now, all of alpha would fall in just one tail t.05, 49 df = -1.677 This shifted the Rejection Region to the right and made it easier to reject the Null -1.677 t*=-.50 My test statistic does not fall in the rejection region, therefore I cannot reject the Null 26 Summary We established the basis for a Test We base it on a Rare Event Approach We ask how rare an event it was to draw a sample of size n and observe our sample estimate - mean or p If the the true value were really that specified in the Null To do this we need A Null and Alternative A Test Statistic, z* or t* A criterion for decision making - how far away is enough to reject the Null - based on! 27