Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test.
|
|
|
- Madeline Wilcox
- 9 years ago
- Views:
Transcription
1 HYPOTHESIS TESTING
2 Learning Objectives Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test. Know how to perform a hypothesis test to compare a sample statistic to a target value. Know how to interpret a hypothesis test.
3 How does it help? Hypothesis testing is is necessary to: determine when there is is a significant difference between two sample populations. determine whether there is is a significant difference between a sample population and a target value.
4 IMPROVEMENT ROADMAP Uses of Hypothesis Testing Common Uses Phase 1: Measurement Characterization Breakthrough Phase : Analysis Confirm sources of variation to determine causative factors (x). Strategy Optimization Phase 3: Improvement Phase 4: Control Demonstrate a statistically significant difference between baseline data and data taken after improvements were implemented.
5 KEYS TO SUCCESS Use hypothesis testing to explore the data Use existing data wherever possible Use the team s experience to direct the testing Trust but verify.hypothesis testing is the verify If there s any doubt, find a way to hypothesis test it
6 SO WHAT IS HYPOTHESIS TESTING? The theory of probability is nothing more than good sense confirmed by calculation. Laplace We think we see something well, we think err maybe it it is could be. But, how do we know for sure? Hypothesis testing is is the key by giving us a measure of how confident we can be in our decision.
7 SO HOW DOES THIS HYPOTHESIS STUFF WORK? Critical Point Toto, I don t think we re in Kansas anymore. H o = no difference (Null hypothesis) Statistic CALC < CALC Statistic CRIT CRIT H 1 = significant difference (Alternate Hypothesis) Statistic CALC > CALC Statistic CRIT CRIT Statistic Value We determine a critical value from a probability table for the statistic. This value is is compared with the calculated value we get from our data. If If the calculated value exceeds the critical value, the probability of of this occurrence happening due to to random variation is is less than our test α. α.
8 SO WHAT IS THIS NULL HYPOTHESIS? Mathematicians are like Frenchmen, whatever you say to them they translate into their own language and forth with it is something entirely different. Goethe Hypothesis Symbol How you say it What it means Null H o Fail to Reject the Null Hypothesis Alternative H 1 Reject the Null Hypothesis Data does not support conclusion that there is a significant difference Data supports conclusion that there is a significant difference
9 HYPOTHESIS TESTING ROADMAP... Population Average Population Variance Compare Population Averages Compare a Population Average Against a Target Value Compare Population Variances Compare a Population Variance Against a Target Value Test Used Test Used Test Used Test Used Z Stat (n>30) Z Stat (n>30) F Stat (n>30) F Stat (n>30) Z Stat (p) Z Stat (p) F Stat (n<10) χ Stat (n>5) t Stat (n<30) t Stat (n<30) χ Stat (n>5) τ Stat (n<10) τ Stat (n<10)
10 HYPOTHESIS TESTING PROCEDURE Determine the hypothesis to be tested (Ho:=, < or >). Determine whether this is a 1 tail (a) or tail (a/) test. Determine the a risk for the test (typically.05). Determine the appropriate test statistic. Determine the critical value from the appropriate test statistic table. Gather the data. Use the data to calculate the actual test statistic. Compare the calculated value with the critical value. If the calculated value is larger than the critical value, reject the null hypothesis with confidence of 1-a (ie there is little probability (p<a) that this event occurred purely due to random chance) otherwise, accept the null hypothesis (this event occurred due to random chance).
11 WHEN DO YOU USE a VS a/? Many test statistics use α and others use α/ and often it is confusing to tell which one to use. The answer is straightforward when you consider what the test is trying to accomplish. If there are two bounds (upper and lower), the α probability must be split between each bound. This results in a test statistic of α/. If there is only one direction which is under consideration, the error (probability) is concentrated in that direction. This results in a test statistic of α. α α/ Examples Critical Critical Value Value Critical Critical Value Value Critical Critical Value Value Examples Ho: μ 1 >μ 1 >μ Ho: σ 1 <σ 1 <σ Common Occurrence Rare Occurrence Rare Occurrence Common Occurrence Rare Occurrence Ho: μ 1 =μ 1 =μ Ho: σ 1 =σ 1 =σ 1 α Probability α Probability α/ Probability 1 α Probability α/ Probability Confidence Confidence Int Int Test Test Fails Fails in in one one direction = α Test Test Fails Fails in in either direction = α/ α/
12 Sample Average vs Sample Average Coming up with the calculated statistic... n1= n 0 n1 + n 30 n + n > 1 X X τ dcalc = R + R 1 t = 1 1 [( n 1) s1 + ( n 1) s] + n n n + n 1 1 Z CALC = 1 30 Sample t Sample Tau Sample Z (DF: n 1 +n -) X X 1 X σ1 n X σ1 + n 1 1 Use these formulas to calculate the actual statistic for comparison with the critical (table) statistic. Note that the only major determinate here is the sample sizes. It should make sense to utilize the simpler tests ( Sample Tau) wherever possible unless you have a statistical software package available or enjoy the challenge.
13 Hypothesis Testing Example ( Sample Tau) Several changes were made to the sales organization. The weekly number of orders were tracked both before and after the changes. Determine if the samples have equal means with 95% confidence. Ho: m 1 = m Statistic Summary: n 1 = n = 5 Significance: a/ =.05 ( tail) tau crit =.613 (From the table for a =.05 & n=5) Calculation: R 1 =337, R = 577 X 1 =868, X =896 tau CALC =( )/( )=.06 X X τ dcalc = R + R 1 1 Test: H o : tau CALC < tau CRIT H o :.06<.613 = true? (yes, therefore we will fail to reject the null hypothesis). Receipts 1 Receipts Conclusion: Fail to reject the null hypothesis (ie. The data does not support the conclusion that there is a significant difference)
14 Hypothesis Testing Example ( Sample t) Several changes were made to the sales organization. The weekly number of orders were tracked both before and after the changes. Determine if the samples have equal means with 95% confidence. Ho: m 1 = m Statistic Summary: n 1 = n = 5 DF=n 1 + n - = 8 Significance: a/ =.05 ( tail) t crit =.306 (From the table for a=.05 and 8 DF) Calculation: s 1 =130, s = 7 X 1 =868, X =896 t CALC =( )/.63*185=.4 Test: H o : t CALC < t CRIT t = 1 1 [( n 1) s1 + ( n 1) s + ] n n n + n 1 Receipts 1 Receipts H o :.4 <.306 = true? (yes, therefore we will fail to reject the null hypothesis). Conclusion: Fail to reject the null hypothesis (ie. The data does not support the conclusion that there is a significant difference X X 1 1
15 Sample Average vs Target (m 0 ) Coming up with the calculated statistic... n 0 n 30 n > 30 1 Sample Tau 1 Sample t (DF: n-1) 1 Sample Z = X μ X μ 0 X μ 0 0 t CALC = Z CALC = R s s n n τ 1CALC Use these formulas to calculate the actual statistic for comparison with the critical (table) statistic. Note that the only major determinate again here is the sample size. Here again, it should make sense to utilize the simpler test (1 Sample Tau) wherever possible unless you have a statistical software package available (minitab) or enjoy the pain.
16 Sample Variance vs Sample Variance (s ) Coming up with the calculated statistic... n 1 < 10, n < 10 n 1 > 30, n > 30 Range Test F = CALC R R MAX, n MIN, n 1 F Test (DF 1 : n 1-1, DF : n -1) F s s calc = MAX MIN Use these formulas to calculate the actual statistic for comparison with the critical (table) statistic. Note that the only major determinate again here is the sample size. Here again, it should make sense to utilize the simpler test (Range Test) wherever possible unless you have a statistical software package available.
17 Hypothesis Testing Example ( Sample Variance) Several changes were made to the sales organization. The number of receipts was gathered both before and after the changes. Determine if the samples have equal variance with 95% confidence. Ho: s 1 = s Statistic Summary: n 1 = n = 5 Significance: a/ =.05 ( tail) F crit = 3.5 (From the table for n 1, n =5) Calculation: R 1 =337, R = 577 F CALC =577/337=1.7 Test: H o : F CALC < F CRIT F = CALC H o : 1.7 < 3.5 = true? (yes, therefore we will fail to reject the null hypothesis). Conclusion: Fail to reject the null hypothesis (ie. can t say there is a significant difference) R R MAX, n MIN, n 1 Receipts 1 Receipts
18 HYPOTHESIS TESTING, PERCENT DEFECTIVE n 1 > 30, n > 30 Compare to target (p 0 ) Compare two populations (p 1 & p ) Z CALC = p p p 1 0 ( 1 p ) 0 0 n Z CALC = np n _ np + n p p 1 np 1 1_ np n + n n n 1 1 Use these formulas to calculate the actual statistic for comparison with the critical (table) statistic. Note that in both cases the individual samples should be greater than 30.
19 How about a manufacturing example? We have a process which we have determined has a critical characteristic which has a target value of.53. Any deviation from this value will sub-optimize the resulting product. We want to sample the process to see how close we are to this value with 95% confidence. We gather 0 data points (shown below). Perform a 1 sample t test on the data to see how well we are doing
20 Learning Objectives Understand the role that hypothesis testing plays in an improvement project. Know how to perform a two sample hypothesis test. Know how to perform a hypothesis test to compare a sample statistic to a target value. Know how to interpret a hypothesis test.
SAMPLE SIZE CONSIDERATIONS
SAMPLE SIZE CONSIDERATIONS Learning Objectives Understand the critical role having the right sample size has on an analysis or study. Know how to determine the correct sample size for a specific study.
Learning Objectives. Understand how to select the correct control chart for an application. Know how to fill out and maintain a control chart.
CONTROL CHARTS Learning Objectives Understand how to select the correct control chart for an application. Know how to fill out and maintain a control chart. Know how to interpret a control chart to determine
2 Sample t-test (unequal sample sizes and unequal variances)
Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
Two Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
Hypothesis Testing: Two Means, Paired Data, Two Proportions
Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this
Hypothesis Testing --- One Mean
Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
Hypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Math 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Stats Review Chapters 9-10
Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
How To Test For Significance On A Data Set
Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.
Paired 2 Sample t-test
Variations of the t-test: Paired 2 Sample 1 Paired 2 Sample t-test Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.
November 08, 2010. 155S8.6_3 Testing a Claim About a Standard Deviation or Variance
Chapter 8 Hypothesis Testing 8 1 Review and Preview 8 2 Basics of Hypothesis Testing 8 3 Testing a Claim about a Proportion 8 4 Testing a Claim About a Mean: σ Known 8 5 Testing a Claim About a Mean: σ
THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.
Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
Using Excel for inferential statistics
FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected] www.excelmasterseries.com
p ˆ (sample mean and sample
Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics
Hypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
HYPOTHESIS TESTING WITH SPSS:
HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Chapter 7 Section 1 Homework Set A
Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the
CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS
CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent
Unit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
Mind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
Variables Control Charts
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables
AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
Chapter 2 Probability Topics SPSS T tests
Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures
Point Biserial Correlation Tests
Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Chapter 7 TEST OF HYPOTHESIS
Chapter 7 TEST OF HYPOTHESIS In a certain perspective, we can view hypothesis testing just like a jury in a court trial. In a jury trial, the null hypothesis is similar to the jury making a decision of
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Introduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation
Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)
5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
Comparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
Introduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
Confidence intervals
Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,
CORRELATION ANALYSIS
CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient
Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation
Confidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
Chapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions
Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction
Hypothesis Testing PSY 360 Introduction to Statistics for the Behavioral Sciences Reminder of Inferential Statistics All inferential statistics have the following in common: Use of some descriptive statistic
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Practice problems - chapter 12-1 and 2 proportions for inference - Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide
Principles of Hypothesis Testing for Public Health
Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine [email protected] Fall 2011 Answers to Questions
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
1 Hypothesis Testing. H 0 : population parameter = hypothesized value:
1 Hypothesis Testing In Statistics, a hypothesis proposes a model for the world. Then we look at the data. If the data are consistent with that model, we have no reason to disbelieve the hypothesis. Data
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
One-Way Analysis of Variance
One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
1-3 id id no. of respondents 101-300 4 respon 1 responsible for maintenance? 1 = no, 2 = yes, 9 = blank
Basic Data Analysis Graziadio School of Business and Management Data Preparation & Entry Editing: Inspection & Correction Field Edit: Immediate follow-up (complete? legible? comprehensible? consistent?
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
Bivariate Statistics Session 2: Measuring Associations Chi-Square Test
Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution
MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,
Chapter 23. Two Categorical Variables: The Chi-Square Test
Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test
Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric
UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST
UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777
Math 210 - Exam 4 - Sample Exam 1) What is the p-value for testing H1: µ < 90 if the test statistic is t=-1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that
Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1.
Normal Distribution Definition A continuous random variable has a normal distribution if its probability density e -(y -µ Y ) 2 2 / 2 σ function can be written as for < y < as Y f ( y ) = 1 σ Y 2 π Notation:
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma [email protected] The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
THE SIX SIGMA BLACK BELT PRIMER
INTRO-1 (1) THE SIX SIGMA BLACK BELT PRIMER by Quality Council of Indiana - All rights reserved Fourth Edition - September, 2014 Quality Council of Indiana 602 West Paris Avenue West Terre Haute, IN 47885
