WHY NEGATIVE TIMES NEGATIVE POSITIVE

Similar documents
Properties of Real Numbers

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

CAHSEE on Target UC Davis, School and University Partnerships

Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below

GUIDE TO EVERYTHING FRACTIONS

Ummmm! Definitely interested. She took the pen and pad out of my hand and constructed a third one for herself:

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Solving Rational Equations

Engage in Successful Flailing

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Math Games For Skills and Concepts

MATRIX MULTIPLICATION

Factoring Quadratic Trinomials

Objective. Materials. TI-73 Calculator

Click on the links below to jump directly to the relevant section

Regions in a circle. 7 points 57 regions

Section 1.5 Exponents, Square Roots, and the Order of Operations

INTERSECTION MATH And more! James Tanton

1.6 The Order of Operations

Lies My Calculator and Computer Told Me

The theory of the six stages of learning with integers (Published in Mathematics in Schools, Volume 29, Number 2, March 2000) Stage 1

3.1. RATIONAL EXPRESSIONS

Decimal Notations for Fractions Number and Operations Fractions /4.NF

GRADE 5 SUPPLEMENT. Set A2 Number & Operations: Primes, Composites & Common Factors. Includes. Skills & Concepts

3. Logical Reasoning in Mathematics

CONTENTS 1. Peter Kahn. Spring 2007

Curriculum Alignment Project

Subtracting Negative Integers

0.8 Rational Expressions and Equations

A Prime Investigation with 7, 11, and 13

How To Factor Quadratic Trinomials

Chapter 11 Number Theory

Polynomial Expression

Contents. Sample worksheet from

for the Bill Hanlon

Multiplication Rules! Tips to help your child learn their times tables

What Is Singapore Math?

Tom wants to find two real numbers, a and b, that have a sum of 10 and have a product of 10. He makes this table.

An Introduction to Number Theory Prime Numbers and Their Applications.

Accentuate the Negative: Homework Examples from ACE

3 Some Integer Functions

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Factoring ax 2 + bx + c - Teacher Notes

Prime Factorization 0.1. Overcoming Math Anxiety

A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated

Adding and Subtracting Integers Unit. Grade 7 Math. 5 Days. Tools: Algebra Tiles. Four-Pan Algebra Balance. Playing Cards

Multiplication and Division with Rational Numbers

2 Session Two - Complex Numbers and Vectors

PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE

IV. ALGEBRAIC CONCEPTS

Vieta s Formulas and the Identity Theorem

Section V.3: Dot Product

Radicals - Multiply and Divide Radicals

SAT Math Facts & Formulas Review Quiz

Session 7 Fractions and Decimals

5.1 Radical Notation and Rational Exponents

Integers (pages )

Building Concepts: Dividing a Fraction by a Whole Number

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

Sums & Series. a i. i=1

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

Simple Examples. This is the information that we are given. To find the answer we are to solve an equation in one variable, x.

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2

Math 319 Problem Set #3 Solution 21 February 2002

Minnesota Academic Standards

**Unedited Draft** Arithmetic Revisited Lesson 4: Part 3: Multiplying Mixed Numbers

Cubes and Cube Roots

Factoring Polynomials and Solving Quadratic Equations

1.2. Successive Differences

Commutative Property Grade One

How to write proofs: a quick guide

Session 6 Number Theory

6.3 Conditional Probability and Independence

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

3.2 Methods of Addition

Solving Equations. How do you know that x = 3 in the equation, 2x - 1 = 5?

Hands-On Math Algebra

So let us begin our quest to find the holy grail of real analysis.

Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )

Problem of the Month: Perfect Pair

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

Parentheses in Number Sentences

Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods

Assignment 5 - Due Friday March 6

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera

Playing with Numbers

First Affirmative Speaker Template 1

25 Integers: Addition and Subtraction

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

The Crescent Primary School Calculation Policy

Falling in Love with Close Reading Study Guide

[1] Diagonal factorization

5544 = = = Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

E XPLORING QUADRILATERALS

Exponents and Radicals

Practical Jealousy Management

Exponents. Exponents tell us how many times to multiply a base number by itself.

Transcription:

TANTON S TAKE ON WHY NEGATIVE TIMES NEGATIVE POSITIVE CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM OCTOBER 212 I remember asking my fifth-grade teacher why negative times negative is positive. She answered: It just is. Go back and finish your worksheet. (I must have caught her at a bad moment!) It is a perennial question and one that can be mighty tricky to answer satisfactorily be it for a young student, for a highschool student, or for ourselves! How might you personally explain to a colleague why negative times negative should be positive? Some people equate negative with opposite and state: taking the opposite of the opposite clearly brings you back to start. Along these lines I ve had teachers describe walks on a number line in left and right directions or talk of credit and debt. ( Suppose you owe someone a debt of $. Think about what that might mean. ) But this thought only helps illustrates why a is the same as + a. This is a different question! The opposite of the opposite does not 2 3, for example, address why should be positive six. An idea: Many folk say that a is the 1 a. [Is this obvious?] In same as which case: a ( 1) ( 1) = a. So maybe believing a equals a is enough to logically deduce that 1 1 must equal positive one. Hmm. What do you think? Negative numbers caused scholars much woe in the history of mathematics. A negative quantity is abstract and giving meaning to an arithmetic of negatives was troublesome. (What does it mean to multiply together a five dollar debt and a two dollar debt?) Number begins in our developing minds as a concrete concept. counts something real - cows in a field, flavors of ice-cream, misplacements of an umlaut in a badly written German sentence. We have youngsters count counters or dots and develop a sense of arithmetic from the tangible. For instance, here is a picture of a sum: 2+ 3= Looking at the same picture backwards we see 3+ 2, and this too must be. (It

is the same picture!) For any two counting numbers we thus come to believe: a+ b= b+ a. At this level, multiplication is often seen as repeated addition: 4 = four groups of five = + + + COMMIENT: The geometric model for multiplication lets us compute multidigit products with ease: just chop up a rectangle! Here is 37 23. 2 There is no reason to believe that four groups of five should be the same as five groups of four at least not until the inspiration comes to arrange those four groups of five in a rectangle: (I can almost do this in my head!) We are then led to believe that a b= b a for all counting numbers. As five groups of nothing still gives us very little, we come to say that a = for all counting numbers a. FOIL or FLIO or LIFO or OILF? Let go of first, outer, inner, last! Have students simply draw rectangles whenever they need to expand parentheses. If instead of counting dots we count unit squares, we start to associate multiplication with the geometry of area. The order in which you add individual pieces does not matter. (Let them OILF!) And by dividing a rectangle into pieces we discover a whole host of distributive rules we feel should hold for counting numbers. Also, with rectangles, students can expand expressions for which FOIL is of no help.

So in the realm of counting numbers, the positive whole numbers, we come to believe the following rules of arithmetic: For all counting numbers a,b and c we have: 1. a+ b= b+ a 2. a b= b a 3. a = a b+ c = ab+ ac 4. (along with other variations of the distributive rule). There are other rules too we can discuss, (that a+ = and 1 a= a, for all counting numbers a, for instance) but the ones listed above are the key players in the issue of this essay. ENTER THE NEGATIVE NUMBERS Whatever model one uses to introduce negative numbers to students, we all like to believe that a is a number, which when added to a, gives zero:. a+ ( a) = (Whether such a number exists can be debated!) As soon as we start playing the negative number game we are faced with a fundamental question: Do we feel that the rules of arithmetic listed above are natural and right? Do they feel so natural and so right that we think they should hold NO MATTER WHAT, for ALL types of numbers? If the answer to this question is YES, then you have no logical choice but to accept negative times negative is positive! Read on! Comment: Accepting these rules of arithmetic as valid for negative numbers is a choice! You could decide, for instance, that negatives follow a different set of rules. And doing so is fine you then will be on the exciting path of creating a new type of number system! (And alternative arithmetics can be useful and real. For example, the founders of quantum mechanics discovered that the arithmetic describing fundamental particles fails to follow the rule a b= b a!) Positive times Negative: 2 3 equal negative six? Why should If we follow the repeated addition model for multiplication, we argue: 2 3 = two groups of ( 3) = ( 3) + ( 3) = 6. But at some point we must set multiplication free of its alleged binds to addition and let it be its own independent mathematical operation. ( Repeated addition has little meaning for 2 a? What are square root two groups of a quantity?) We need the rules of arithmetic at least the ones we re choosing to believe to explain why results must be true. Here s how to examine 2 ( 3) in this light. We use rules 3, 4, and. By rule 3 we believe: 2 =. Rewriting zero in a clever way (via rule ) we must then also believe: 2 3+ 3 = ( ) Expanding via rule 4 gives: 2 3 + 2 3 = We can handle 2 3, it is 6. So we have: 6 + 2 ( 3) =. Six plus a quantity is zero. That quantity must be 6 2 3. Voila! is 6. Note: We are not locked into the specific numbers 2 and 3 for this argument. 3

Negative times Positive: 2 3 be? What should We must now, for sure, let go of our repeated addition thinking! (Does negative two groups of three make sense?) However, by rule 2 we have agreed that 2 3 3 2, which ( ) should equal we calculate to be 6 by the previous argument. Done! ( 2) 3 and all its kin are now under control. THE BIGGIE: Negative times Negative! 2 3. Can we Let s think about follow essentially the same argument as before? Let s try. By rule 3 we believe: 2 =. Rewriting zero (via rule ) we must then also believe: 2 3+ 3 = Expanding via rule 4 gives: 2 3 + 2 3 = We ve just done ( 2) 3, it is 6. So we have: ( 6) + ( 2) ( 3) =.. 6 plus a mysterious quantity is zero. That quantity must be + 6. That is ( 2) ( 3) must equal + 6. No choice! This does it. Rules 3, 4, and simply force negative times negative to be positive! AN ANSWER TO SATISFY A FIFTH-GRADE JAMES TANTON Our work here shows the true reason why negative times negative is positive it is a logical consequence of the axioms we choose to accept in standard arithmetic. I do not, however, recommend offering this abstract rationale to a young student asking the question! But there is an accessible answer that I do think would have satisfied a young James Tanton. It does follow the same rationale as before, but the axioms and logical steps are hidden behind the scenes. We return to the area model of multiplication. To examine ( 2) ( 3), say, start by looking at 18 17. By the rectangle method we have: Now let s have some fun. Instead of thinking of 17 as 1+ 7, think of it as 2 3! Do we still get 36? We do! 4 EXERCISE: Repeat this argument to show that ( 4) ( ) must be +2. [It is fine here to go back to our early 1 3 3.] thinking: ( ) = ten groups of

How about having fun with 18 instead? Think of it as 2 2. Yep! 36. [I find students will naturally choose to 2 1 1 2. But I calculate ( ) as do ask: Do you think it is okay to think of it this way? ] Okay The answer is 36 no matter how we seem to look at it. So let s look at it having fun with both numbers at the same time! Do you see that this now 2 3? contains the mysterious We know the answer is 36. So what must the value of the question marks be? Well the math is telling us 4 6 4 +?? = 36. That is,3 +?? = 36. We must be dealing with the value + 6. That is, the math is saying it wants 2 3 =+ 6. Negative times negative is positive. EXERCISE: Repeat this argument to show that ( 4) ( ) must be +2. (Perhaps look at 36 2 or?) For the VERY Technically Minded: Professional mathematicians reading this essay will be quick to point out that the arguments I have presented still contain unspoken assumptions. For example, when presented with 6 +?? = we assumed that the question marks must have the value 6. How do we know this? The answer might be to add 6 to the left side and to the right side and to make use of the associative rule (not mentioned in this essay). 6+ 6 +?? = 6+ ( ) 6+ 6 +?? = 6+ Rule allows us to conclude +?? = 6+. The property of zero (only quickly mentioned in this piece) then gives:?? = 6. CHALLENGE 1: Identify ALL the rules of arithmetic one should list in order to properly conduct the arguments listed in this newsletter! (Mathematicians call them the axioms of a ring. ) CHALLENGE 2: Prove that every number a has only ONE additive inverse. That is, if a+ b= and a+ c= also, then b and c must be the same number. (Only after establishing this will mathematicians say that the additive inverse a of number a is a well defined concept.) CHALLENGE 3: Prove that a and 1 a are the same number.[hint: ( 1) 1 ( 1) a+ a= a+ a=.] CHALLENGE 4: Prove that ( a) and a are the same number. CHALLENGE : Prove =. 212 James Tanton