Environmental Impacts of Air Pollution



Similar documents
Revealing the costs of air pollution from industrial facilities in Europe a summary for policymakers

What are the causes of air Pollution

Costs of air pollution from European industrial facilities an updated assessment

What is Acid Rain and What Causes It?

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description

measured (empirical) data from CCC. The modelled values are of value for all (ecosystem specific modelling work deposition)

EMISSIONS OF AIR POLLUTANTS IN THE UK, 1970 TO 2014

ph Value of Common Household Items and the Environmental Effects ph on Water;

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

The Nitrogen Cycle. What is Nitrogen? Human Alteration of the Global Nitrogen Cycle. How does the nitrogen cycle work?

PRESENTATION 2 MAJOR ENVIRONMENTAL PROBLEMS

Air Pollution. Copenhagen, 3 rd September Valentin Foltescu Project manager air quality European Environment Agency

Natural Resources. Air and Water Resources

HEALTH AND ENVIRONMENTAL BENEFITS OF LOW SULFUR FUELS. BIRHANU GENET July 22, 2008

Air Quality Appraisal Damage Cost Methodology

SoCo: European Overview on soil degradation processes related to agriculture

Chapter 3 Communities, Biomes, and Ecosystems

Impacts of air pollution on human health, ecosystems and cultural heritage

A User s Guide for the Ambient Water Quality Guidelines for Cadmium

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Sources to Seafood: Mercury Pollution in the Marine Environment Background on Presenting Scientists

Chapter 14 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question.

Overview: Human Health Effects of Environmental Contaminants

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE ESCI INTRODUCTION TO ENVIRONMENTAL SCIENCE

Aquatic Biomes, Continued

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES

Part B Integrated Monitoring Design for Comprehensive Assessment and Identification of Impaired Waters Contents

General Structure of Life Cycle Impact Assessment Lecture. Mark Huijbregts Department of Environmental science Radboud University

Areas of protection and the impact chain

LIMNOLOGY, WATER QUALITY

Kevin Burke AIA. Partner. Amsterdam

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

Phosphorus and Sulfur

Biology Keystone (PA Core) Quiz Ecology - (BIO.B ) Ecological Organization, (BIO.B ) Ecosystem Characteristics, (BIO.B.4.2.

Ecosystems and Food Webs

3. Which relationship can correctly be inferred from the data presented in the graphs below?

Urban Ecology: Watersheds and Aquatic Ecology A BIOBUGS program

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413

Total Suspended Solids Total Dissolved Solids Hardness

Chapter 3: Water and Life

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Extracting Energy from Biomass

Phosphorus. Phosphorus Lake Whatcom Cooperative Management.

Department of Environmental Engineering

AP* Environmental Science: Atmosphere and Air Pollution Answer Section

Nipigon Bay. Area of Concern Status of Beneficial Use Impairments September 2010

Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans.

Pre-requisites: Successful completion of 4th grade science and the 4th grade science assessment.

Communities, Biomes, and Ecosystems

THE WATER CYCLE. Ecology

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES

UK Air Quality Monitoring Networks

Environmental Benefits of Pervious Concrete

Pond Ecosystem Field Study MOLS

MERCURY USE: AGRICULTURE

Physical flow accounts: principles and general concepts

A Traditional Island Industry

FACT SHEET PROPOSED MERCURY AND AIR TOXICS STANDARDS

THE ECOSYSTEM - Biomes

Impact Assessment of Dust, NOx and SO 2

GPS Safety Summary. Hydrogen Chloride/Hydrochloric Acid. HCl

Syllabus Example - CCU

LIFE CYCLE ASSESSMENT ON COTTON AND VISCOSE FIBRES FOR TEXTILE PRODUCTION

TABLET DETERGENTS Towards A More Sustainable Future

1.2 The Biosphere and Energy

Solving the Smog Puzzle on Earth and from Space: Good vs. Bad Ozone

WILDFIRE RESTORATION OR DEVASTATION?

WASTEWATER TREATMENT

What is an Oil Spill?

The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of

GLOBAL CIRCULATION OF WATER

Use this diagram of a food web to answer questions 1 through 5.

Chapter 2. The Nitrogen Cycle

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

Smoke Management Plan

Biodiversity Concepts

Soil Acidity Ranking, Soil Sensitivity and Vulnerability to Acid Deposition in the Northeast Region of Thailand

imgkid.com OIL SPILLS

Globally Harmonized System Pictogram Reference Table

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007

Integrated Pest Management (IPM) Policy

Tree Integrated Pest Management. Dan Nortman Virginia Cooperative Extension, York County

Complete tests for CO 2 and H 2 Link observations of acid reactions to species

2) Relevance for environmental policy ) Data sources and reporting ) References at the international level... 6

This material is based on work supported by the U.S. Department of Agriculture, Extension Service & the U.S. EPA

Water Treatment Filtration Lab. discharged into an aquatic ecosystem? We had to build a water filtration system with

Expert Panel Assessment. Snowy Precipitation Enhancement Trial (SPET) Executive Summary

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

Position Statement regarding Offshore Wind Proposals on Lake Huron. Lake Huron Centre for Coastal Conservation

a. a population. c. an ecosystem. b. a community. d. a species.

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the

Economic and Social Council

Whale Jenga Food Web Game

Life Cycle Assessment of Three Water Scenarios: Importation, Reclamation, and Desalination

IPM Plan for Campus Landscape

Environmental Science Scope & Sequence

Thunder Bay. Area of Concern Status of Beneficial Use Impairments September 2010

GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

Biomes An Overview of Ecology Biomes Freshwater Biomes

Transcription:

Environmental Impacts of Air Pollution Lisa Phinney Air Quality Sciences Meteorological Service of Canada Steve Beauchamp, David Waugh, Rob Tordon Environment Canada s Green Lane (www.( www.ec.gc.ca) Clean Air Online (http://www.ec.gc.ca/cleanair( http://www.ec.gc.ca/cleanair-airpur) 2004 Canadian Acid Deposition Science Assessment (www.msc-smc.ec.gc.ca/saib/acid/acid_e.html)

Why is the Atmosphere Important? the atmosphere affects all exposed surfaces all the time the atmosphere is highly variable in space and time no other medium can transport great amounts of pollutant over such large distances over so short a time Image courtesy NASA: http://veimages.gsfc.nasa.gov//5417/ecanada.a2003144.1535.1km.jpg

How does air pollution affect the quality of the environment? Ozone, PM Acid Deposition Hazardous Air Pollutants (HMs, POPs) Increased UV due to depleting ozone layer Indirect Effects (biofeedback cycles)

SMOG (ozone and PM) Ground-Level Ozone: - photochemical reaction between NOx and VOCs - strong oxidant - causes tissue damage, reduced growth rate

Ozone Damage The first sign of ozone damage in vegetation is a purple or black stippling between the veins in the tops of the leaves ozone enters stomata with CO 2, prompting stomata to close which also blocks CO 2, interfering with photosynthesis

Particulate Matter (PM): - primarily physical damage (tissue) - inhalation causes respiratory and cardiac problems, premature death secondary issues: - acidic (sulphates, nitrates) - toxic (HMs, PAHs) -much research focus on human health effects... speculate similar effects in wildlife

Acid Deposition Dry Deposition direct deposition of acidic gasses (NO x, SO 2, H 2 SO 4 ) and acid particulate (HNO 3, (NH 4 ) 2 SO 4, H 2 SO 4 ), to leaves, rocks, buildings Wet Deposition acidic gasses react with water in the atmosphere to form liquid phase acids (HNO 3, (NH 4 ) 2 SO 4, H 2 SO 4 ), which rain or fog out

Acids are strong oxidants causing physical damage to tissues Deposition of H 2 SO 4 can yield the following reactions in soils and water: H 2 SO 4(aq) 2H + + SO 4 2- CaCO 3(aq) Ca 2+ + CO 3 2-2H + + CO 3 2- H 2 O + CO 2 if the soil has high carbonate content, this reaction will buffer the acidity. However once CaCO 3 has been depleted by this reaction, buffering capacity is lost and the ecosystem will become acidified effect most evident during spring melt when the pollutants that have built up in snow and frozen ground all drain to aquatic basin at once especially important if biota are in vulnerable stage in the spring time (hatchlings)

CRITICAL LOAD amount of pollution that an ecosystem can tolerate above which the environment is harmed dependent on the ability of the ecosystem to neutralise acidity TARGET LOAD amount of pollution that is deemed achievable and politically acceptable dependent on environmental considerations as well as ethics, scientific uncertainties, social and economic effects

in 1994 the target load for wet sulphate deposition was set by the Eastern Canada Acid Rain Program at 20 kg/ha/yr from Manitoba eastwards (through reductions in SO 2 emissions) Meteorological Service of Canada, 2004

Critical Loads of Forest Soils Meteorological Service of Canada, 2004 most sensitive least sensitive The critical loads remain much lower than the 1994 target loads, and 21-75% of Eastern Canada still have acid deposition rates in excess of critical loads Thus in 2000, the Canada-Wide Acid Rain Strategy adopted the primary goal of reaching critical loads across country

Biological Effects of Acidification Fish: corrodes gill material, attacks CaCO 3 skeleton failure of females to spawn, and hatchlings or small fry unable to withstand acidity (thus some lakes only have older fish leading to a false sense of ecosystem health for anglers who catch good-sized fish) uptake of HM pollutants decreased growth rate, inability to self-regulate body chemistry, reduced egg deposition, deformities, increased susceptibility to disease Atlantic Salmon stocks in SW NS declined 75% between 1975 and 2000; extirpated or declined >90% in 34 of 63 rivers in NS (Meteorological Service of Canada, 2004) least tolerant: trout, salmon, smallmouth bass, walleye most tolerant: yellow perch, rock bass, central mudminnow, largemouth bass

Biological Effects of Acidification Birds: reduced fish stocks loss of food source, esp for chicks leaching of heavy metals (HMs) mercury (Hg) and lead (Pb) bioaccumulate in food chain, reaching toxic levels in piscavores loss of calcium-rich foods required by some bird species (i.e. wood thrush, black-throated blue warbler) Hame, R.S., Proceedings of the National Academy of Sciences, Vol.99, No. 16, 2002

Biological Effects of Acidification Forests: leeches out nutrients like Ca 2+, Mg 2+, K + by combining with acids, leaving soil low in nutrients and eventually acidifying soil acid rain, fog, and vapour damages the surfaces of leaves and needles reduces tree s ability to withstand cold and disease inhibits germination and reproduction leads to loss of habitat and food sources the effects move through the ecosystem

Biological Effects of Acidification Eutrophication: Deposition of NH 4+ and NO 3- contributes to acidification, but also fertilizes soils by providing directly assimilable nitrogen The excess nutrients result in an over-fertilization and lead to eutrophication Eutrophication can result in an accumulation of algae in surface waters, suppressing the supply of oxygen to deeper waters, altering the ecology of the lake or bay

ph 14 7 5.6 4-5 0 clean acidic basic neutral rain rain acidic ph Effects 6.0 crustaceans, insects, some plankton begin to disappear 5.0 major changes in the makeup of the plankton community less desirable species of mosses and plankton invade <5.0 water is largely devoid of fish nearshore areas may be dominated by mosses terrestrial animals, dependent on aquatic ecosystems, are affected progressive loss of some fish populations is likely, with more highly valued species generally least tolerant of acidity Acid Meteorological Deposition Service of Canada, 2004 Clean Air Online (http://www.ec.gc.ca/cleanair( http://www.ec.gc.ca/cleanair-airpur)

THE SAD TRUTH: many ecosystems in Eastern Canada may not recover without remedial measures because buffering capacity is entirely lost due to leaching of Ca 2+ and other cations so...is the acid rain problem solved?

Hazardous Air Pollutants (HAPs( HAPs) POPs: bioaccumulative and persistent in ecosystem chronically or acutely toxic Pesticides - DDT, chlordane, toxaphene carcinogens, mutagens, teratogens, endocrine disrupters dioxins, furans, PCBs carcinogens Heavy Metals (HMs) Hg, Cd, Pb, Al usually carried on fine particulate (PM 2.5 ) loss of ecosystem health and biodiversity

Mercury and Loons Hg is a neuro-poison, attaching myelin sheath of nerves, inhibiting neural transmission Initial effects are lethargy and reduction in interactive behaviour Loons: back-riding stops; preening increases energy expenditure, increased mortality Hg impairs loon s reproductive success, cause growth-related problems, and death Loon chicks survival at Keji 0.25/pr vs 0.6/pr elsewhere O Driscoll et al., 2005. Nocera and Taylor, 1998.

TGM emissions cut by 50% but not seeing effects at Kejimkujik Kejimkujik Hg Deposition 1996-03 ug/m2/week 10 9 8 7 6 5 4 3 2 1 0 y = 0.044x - 81.186 R 2 = 0.0372 1996 1997 1998 1999 2000 2001 2002 2003 Deposition YEAR Linear (Deposition) Tordon et al, 2005

Biogeochemical Cycling of Hg O Driscoll et al., 2005 Methyl mercury

Ozone Layer - ozone destruction by ozone depleting chemicals (CFCs, HCl) - increased penetration of UV radiation - increased tissue damage by UV; suspected cause of deformities - changes in photochemical and biological production UV affects terrestrial and aquatic ecosystems, altering growth, food chains and biochemical cycles increased levels of UV-B radiation in the Antarctic result in impairment of metabolic processes, decreases in growth, reduction in reproductive potential, morphological abnormalities, genetic damage, and death some species are more tolerant to UV and will proliferate while other less tolerant species will be adversely affected, altering the ecosystem

Feedback Cycles more phytoplankton higher albedo cooling climate changing ecology warming climate plankton changes UV plankton changes Images from NASA s Terra Satellite SO 2 pollution may increase iron bioavailability

Biodiversity (species at risk) -atmospheric chemistry means little if it cannot be related to impacts on ecosystem and/or human health -atmospheric issues are thought to be the second most important stressors on biota (second only to land use changes) -there will be winners and losers due to stressors, changing the ecology and threatening biodiversity

References and Useful Sites: Websites Environment Canada s Green Lane www.ec.gc.ca Clean Air Online www.ec.gc.ca/cleanair-airpur 2004 Canadian Acid Deposition Science Assessment www.msc-smc.ec.gc.ca/saib/acid/acid_e.html Papers Dupont, J., T.A. Clair, C. Gagnon, D.S.Jeffries, J.S.Kahl, S.J. Nelson, J.M..Peckenham, Estimation of Critical Loads of Acidity for Lakes in New England and Eastern Canada. Environmental Monitoring and Assessment, 109 (1-3), 2005 Nocera, J.J., and P.D. Taylor, 1998. In Situ behavioural response of common loons associated with elevated mercury (Hg) exposure. Conservation Ecology (online) 2 (2): 10. http://www.consecol.org/col2/iss2/art10/ O Driscoll, Nelson J., S.T. Beauchamp, T.A. Clair, A.N. Rencz, K.H. Telmer, S.D> Siciliano, and D.R.S. Lean, Mercury Mass Balance for Big Dam West Lake, Kejimkujik Park: the role of volatilization. In: O Driscoll, Nelson J., A.N. Rencz, and D.R.S. Lean (Eds.), Mercury Cycling in a Wetland-Dominated Ecosystem: A Multidisciplinary Study, Society of Environ Toxicol Chem (SETAC), ISBN 1-880611-69-4, 2005. Tordon, R., J. Dalziel, S. Beauchamp, Mercury in Air and Precipitation in Atlantic Canada 1996-2003, Environment Canada Report, 2005.