The Application of Statistical Design of Experiments for Mathematical Modeling of a Bacterial Cell Culture Process

Similar documents
Quantifying Bacterial Concentration using a Calibrated Growth Curve

High deleterious genomic mutation rate in stationary phase of Escherichia coli

Chapter 4 and 5 solutions

BACTERIAL ENUMERATION

Microbiological Testing of the Sawyer Mini Filter. 16 December Summary

Minitab Tutorials for Design and Analysis of Experiments. Table of Contents

ABSORBENCY OF PAPER TOWELS

Analysis of Variance. MINITAB User s Guide 2 3-1

Enzymes: Amylase Activity in Starch-degrading Soil Isolates

Chapter Test B. Chapter: Measurements and Calculations

HOW TO USE MINITAB: DESIGN OF EXPERIMENTS. Noelle M. Richard 08/27/14

Randomized Block Analysis of Variance

Chapter 2 Simple Comparative Experiments Solutions

Testing Surface Disinfectants

Determine Osmolarity Activity Using RFP under PompC

Cell Phone Radiation Effects on Cancer. Tyler Barkich Central Catholic High School Grade 11

MS-EXCEL: ANALYSIS OF EXPERIMENTAL DATA

Nucleic Acid Purity Assessment using A 260 /A 280 Ratios

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine. JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009

Induction of Enzyme Activity in Bacteria:The Lac Operon. Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions

Error Analysis. Table 1. Capacity Tolerances for Class A Volumetric Glassware.

An analysis method for a quantitative outcome and two categorical explanatory variables.

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Phenolphthalein-NaOH Kinetics

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

Marine Microbiological Analysis of Ballast Water Samples

Multivariate Analysis of Variance (MANOVA)

Measuring Line Edge Roughness: Fluctuations in Uncertainty

Transformation Protocol

Table of Content. Enzymes and Their Functions Teacher Version 1

INTRODUCTION TO BACTERIA

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

Enzyme Kinetics: Properties of â-galactosidase

Measuring Protein Concentration through Absorption Spectrophotometry

Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005

Fairfield Public Schools

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Microbiology BIOL 275 DILUTIONS

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.

STATISTICA Formula Guide: Logistic Regression. Table of Contents

Lab Exercise 3: Media, incubation, and aseptic technique

Elementary Statistics Sample Exam #3

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA

Welcome to Implementing Inquirybased Microbial Project. Veronica Ardi, PhD

IB Math Research Problem

Effect Size and Power

Evaluating Trading Systems By John Ehlers and Ric Way

Module 5: Multiple Regression Analysis

Supplementary Materials. Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine

Chi Squared and Fisher's Exact Tests. Observed vs Expected Distributions

Copyright PEOPLECERT Int. Ltd and IASSC

CHEF Genomic DNA Plug Kits Instruction Manual

SOLID STATE CHEMISTRY - SURFACE ADSORPTION

Evaluation of Microbial Growth and Survival on Construction materials treated with Anabec NewBuild 30

Assignment 5 - Due Friday March 6

DESIGN OF EXPERIMENTS IN MATERIAL TESTING AND DETERMINATION OF COEFFICIENT OF FRICTION. Ondřej ROZUM, Šárka HOUDKOVÁ

The Point-Slope Form

Using R for Linear Regression

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Guidance for Industry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Gamma Distribution Fitting

Regression Analysis: A Complete Example

Chapter 5 Analysis of variance SPSS Analysis of variance

CALL VOLUME FORECASTING FOR SERVICE DESKS

Spectrophotometric Determination of the pka of Bromothymol Blue

The Effects of Dish Detergent on Algae. Luke J. Barrante PJAS Central Catholic High School

Hydrogen Peroxide Cell-Based Assay Kit

Predict the Popularity of YouTube Videos Using Early View Data

Summary of important mathematical operations and formulas (from first tutorial):

Applying Statistics Recommended by Regulatory Documents

American Association for Laboratory Accreditation

3. Reaction Diffusion Equations Consider the following ODE model for population growth

Project 5: Scoville Heat Value of Foods HPLC Analysis of Capsaicinoids

Design of Experiments for Analytical Method Development and Validation

Related topics: Application Note 27 Data Analysis of Tube Formation Assays.

CURVE FITTING LEAST SQUARES APPROXIMATION

Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

KEYS TO SUCCESSFUL DESIGNED EXPERIMENTS

ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5

CHAPTER 6 WEAR TESTING MEASUREMENT

Robust Parameter Design Using Statgraphics Centurion. Dr. Neil W. Polhemus Copy right 2011 by StatPoint Technologies, Inc.

Chapter 2 Fractal Analysis in CNC End Milling

Inc. Wuhan. Quantity Pre-coated, ready to use 96-well strip plate 1 Plate sealer for 96 wells 4 Standard (liquid) 2

PHAR 7633 Chapter 19 Multi-Compartment Pharmacokinetic Models

Carolina s Solution Preparation Manual

Response Surface Methods (RSM) for Peak Process Performance at the Most Robust Operating Conditions

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

How To Understand And Solve A Linear Programming Problem

Simple linear regression

Using the Spectrophotometer

EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

SPSS Guide: Regression Analysis

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS

Transcription:

The Application of Statistical Design of Experiments for Mathematical Modeling of a Bacterial Cell Culture Process Driss Elhanafi Biomanufacturing Training & Education Center (BTEC) Golden LEAF BTEC Building 850 Oval Dr, CB, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7928 919-513-8236, driss_elhanafi@ncsu.edu Jim Carey NCE Development, LLC Apex, NC 27502 919-367-2954, jim.carey@newchemicalentity.com

Abstract A full factorial statistical design was used to mathematically model the process for growing the E. coli cell line (BL21(DE3)/ pet17b::gfpuv. The experimental factors of mixing (RPM), temperature, glucose concentration, and tryptic soy broth concentration were included in the shaker flask study. Optical density measurements were used as the means of quantifying cell growth. During the exponential growth phase, the process showed a statistically significant dependence upon mixing, temperature, and tryptic soy broth concentration. The interaction between mixing and temperature was also found to have a statistically significant effect upon the exponential growth rate. Interestingly, the glucose concentration did not exhibit a statistically significant effect upon this growth phase. Optical density measurements taken at seven individual time points throughout the experiment were also used to model the system during different growth phases. It was interesting to note that mixing initially exhibited a negative effect upon growth rate, but as the growth rate accelerated, it had a positive effect. In the early growth phase, tryptic soy broth concentration had the largest positive effect, while temperature dominated most phases of cell growth. As expected, higher temperatures favored higher growth rates. From these data, mathematical models were constructed that may be used to predict the growth rate within the experimental bounds explored in this study. 9/24/2009 2

Introduction The statistical design of experiments (DOE) approach to process development offers several key advantages over the traditional one-variable-at-a-time (OVAT) approach. DOE studies allow for the evaluation of the statistical significance of individual process parameters, as well as the interaction between factors. It is this ability to unambiguously assess the contribution of interaction terms that is simply not possible using the OVAT approach. Another major advantage of the DOE approach is that the statistical significance of various mathematical models can be tested using the appropriate model-fitting functions provided in the DOE software package. The mathematical models can then be utilized to find the predicted optimum system response, such as cell culture growth rate, within the experimental bounds of the study. The optimized set of conditions can then be verified experimentally to validate the model prediction. In the current study, the DOE approach was used to determine the statistically significant factors affecting the growth of the E. coli cell line (BL21(DE3)/ pet17b::gfpuv in shaker flasks. A 2-level full factorial design was employed to assess the statistical significance of mixing (RPM), temperature, glucose concentration, and tryptic soy broth concentration. Replicate runs made at various design points were conducted to provide an estimate of the purely experimental error for the system. Based upon the analysis of variance, the statistically significant factors were then included as terms in the mathematical prediction equations to model the cell culture growth rate within the limits of the experimental design space. 9/24/2009 3

Materials and Method The study was initiated using an overnight seed culture of E. coli in 10 ml Luria Bertali (LB) media, at 37 C at 250 RPM. The starting cell concentration for the seed media, 3.5 x 10 9 CFU per ml, was determined experimentally using serial dilution platings. A 50 µl aliquot of the seed culture was inoculated into 50 ml of the various test media contained within a 250 ml baffled Erlenmeyer flask. The bacterial growth for each set of experimental conditions were monitored by measuring its optical density as a function of time using a spectrophotometer at 600 nm. The resulting optical density values were used to construct growth curves. Media used was composed of a constant concentration of yeast extract (Bacto, 10 g/l), varying amounts of tryptic soy broth (Bacto), and glucose (Fisher). The obtained optical density values were used to construct growth curves and determine the cell culture growth rates. The software package Stat-Ease Design-Expert 7.16 was used to determine the statistical significance of each experimental factor and to generate the corresponding mathematical prediction models. 9/24/2009 4

Results and Discussion The evaluation of four experimental factors, tested at 2 levels, required 16 unique runs (2 4 ). Six replicate runs were performed to provide an estimate of the purely experimental error for a total of 22 runs. The design matrix and resulting exponential growth rates are provided in Table 1 below. Table 1. Design Matrix and Observed Growth Rates Run RPM Temperature (deg C) Glucose Concentration (g/l) TSB Concentration (g/l) Growth Rate (Hr -1 ) 1 50 28 10 0 0.100817439 2 250 28 0 0 1.310626703 3 250 28 10 10 1.877384196 4 50 28 0 0 0.089918256 5 250 37 10 10 5.518072289 6 250 28 10 0 2.005449591 7 250 37 10 0 4.493975904 8 50 37 0 10 0.179836512 9 50 37 10 0 0.10626703 10 50 28 10 10 0.141689373 11 50 28 0 10 0.133514986 12 250 28 0 10 2.04359673 13 250 37 0 0 4.024096386 14 50 37 0 0 0.100817439 15 250 37 0 10 5.301204819 16 50 37 10 10 0.174386921 17 (Run 8 Rep) 50 37 0 10 0.190735695 18 (Run 13 Rep) 250 37 0 0 4.012048193 19 (Run 15 Rep) 250 37 0 10 5.313253012 20 (Run 8 Rep) 50 37 0 10 0.209809264 21 (Run 13 Rep) 250 37 0 0 3.204819277 22 (Run 15 Rep) 250 37 0 10 5.385542169 9/24/2009 5

Results and Discussion The measurement of the cell culture growth rate for the exponential phase was determined by plotting the optical density measurements as a function of time and calculating the slope of the curve. The plots for the 16 unique runs are shown in Figure 1 below. Figure 1. Growth Curves for Full Factorial Design Points Expansion of slow growth runs 1 Run 4 0.8 Run 1 0.6 Run 14 0.4 0.2 0 Run 9 Run 11 0 5 10 Run 10 9/24/2009 6

Results and Discussion Statistical analysis of the observed exponential growth rates revealed that mixing (RPM), temperature, tryptic soy broth concentration, and the interaction term between mixing and temperature were each statistically significant and could therefore be included in the mathematical prediction equation model. The prediction equation lack of fit was found to be not significant, indicating a good fit of the model to the data. The analysis of variance results are provided in Table 2 below. Table 2. Analysis of Variance (ANOVA) for Exponential Growth Phase Analysis of variance table [Partial sum of squares - Type III] Sum of Mean F p-value Source Squares df Square Value Prob > F Block 1.77 1 1.77 Model 57.3 4 14.33 797.56 < 0.0001 significant A-RPM 47.94 1 47.94 2668.96 < 0.0001 significant B-Temperature 1.56 1 1.56 86.66 < 0.0001 significant D-TSB 0.73 1 0.73 40.55 < 0.0001 significant AB 0.62 1 0.62 34.51 < 0.0001 significant Residual 0.29 16 0.018 Lack of Fit 0.25 13 0.019 1.52 0.4081 not significant Pure Error 0.038 3 0.013 Cor Total 59.36 21 9/24/2009 7

t-value of Effect Results and Discussion The rank ordering of statistically significant factors is shown in the Pareto chart in Figure 2 below. The results show that mixing (RPM) is the predominant factor affecting growth during the log phase. Figure 2. Pareto Chart Rank Ordering of Significant Factors Design-Expert Software Ln(Growth Rate) A: RPM B: Temperature C: Glucose D: TSB Positive Effects Negative Effects 51.66 38.75 A Pareto Chart 25.83 12.92 B D AB Bonferroni Limit 3.44432 t-value Limit 2.11991 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Rank 9/24/2009 8

Ln(G row th R ate) Results and Discussion The mathematical prediction model derived from the statistical analysis, Ln(Growth Rate) = -3.18196 + 2.76815E-003 * RPM + 5.87318E-003 * Temperature +0.037122 * TSB + 3.91402E-004 * RPM * Temperature was used to generate the 3-D plot shown in Figure 3 below, demonstrating the interaction between temperature and mixing. Figure 3. Three-dimensional Plot of Temperature-RPM Interaction Design-Expert Software Transformed Scale Ln(Growth Rate) 1.70803-2.40885 X1 = A: RPM X2 = B: Temperature Actual Factors C: Glucose = 5.00 D: TSB = 5.00 1.6 0.65-0.3-1.25-2.2 37.00 250.00 34.75 200.00 32.50 150.00 B: Temperature 30.25 28.00 50.00 100.00 A: RPM 9/24/2009 9

Results and Discussion In addition to evaluating the exponential growth rate for each set of experimental conditions, the instantaneous growth rates at 1.50, 2.33, 3.33, 4.41, 5.41, 6.24, and 9.91 hours were also evaluated. Analyses at each of these seven time intervals showed multiple statistically significant factors, including several twofactor interactions, and one three-factor interaction (temperature*glucose*tsb at 1.50 hours). Table 3. Statistically Significant Factors for Individual Elapsed Time Points Elapsed Time (Hours) Statistically Significant Factors 1.50 A, B, C, D, AC, BD, CD, BCD 2.33 A, B, C, D, AB, BD, CD 3.33 B, D, BD 4.41 A, B, C, D, AB, CD 5.41 A, B, C, D, AB, CD 6.24 A, B, C, D, AB, CD 9.91 A, B, D, AB A: RPM B:Temperature C: Glucose D: TSB 9/24/2009 10

Elapsed Tim e 1.50 Results and Discussion It was interesting to note that in the initial growth phase, there was a negative interaction between glucose concentration and TSB concentration (Figure 4). As the concentration of one of these nutrients increased in the presence of the other, the result was a reduction in the instantaneous growth rate. While the magnitude of this effect was modest compared to the dominant effect of TSB concentration alone, it may provide an area of future research for process optimization. Figure 4. Negative Interaction Between Glucose and TSB Design-Expert Software Elapsed Time 1.50 C- 0.000 C+ 10.000 0.019 Interaction C: Glucose X1 = D: TSB X2 = C: Glucose Actual Factors A: RPM = 150.00 B: Temperature = 32.50 0.015 0.011 0.007 0.003 0.00 2.50 5.00 7.50 10.00 9/24/2009 11 D: TSB

Conclusions Statistically significant mathematical models were derived describing the dependency of bacterial cell culture growth rates upon mixing (RPM), temperature, glucose concentration, and tryptic soy broth concentration. The relative importance, and even the sense of the factor effects varied as the growth process progressed. Temperature was found to be an important factor in every growth phase. The sense of the effect was always positive, meaning that higher temperatures favored higher growth rates. Mixing was controlled by adjusting the RPM of the shaker table and was shown to be an important factor in most growth phases. Interestingly, mixing exhibited a negative influence upon growth in the early growth phases, meaning that lower RPM favored higher growth rates. After the initial four hours of the experiment, mixing exhibited the expected positive influence upon growth, namely that higher RPM favored higher growth rates. This is the predicted behavior because higher mixing rates equate to a higher dissolved oxygen content. The concentration of glucose had a relatively minor effect upon cell growth and in fact was found to be not statistically significant during the exponential growth phase. An important interaction between temperature and mixing was also identified and quantified. Tryptic soy broth concentration was the dominant factor affecting growth in the earliest growth phase, but its relative impact upon the process diminished as the growth proceeded. Higher tryptic soy broth concentrations favored higher growth rates. A curious interaction between tryptic soy broth concentration and glucose concentration was observed. This interaction exhibited a negative effect upon growth, meaning that as the concentrations of either ingredient increased, in the presence of the other ingredient, the two-factor interaction caused a reduction in growth rate. This interaction term was relatively large in magnitude during the first half of the overall growth cycle. Since tryptic soy broth was the dominant factor in the earliest phase of growth, this observation may be indicating that glucose is not required, or may even be detrimental to the growth process in the system studied. An observation supporting this hypothesis was the fact that glucose concentration was not found to be a statistically significant factor during the exponential growth phase for this cell culture. 9/24/2009 12