c d b a f(a,b,c,d,e) d e d e e b b c



Similar documents
Oracle PL/SQL Programming Advanced

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Transistor is a semiconductor device with fast respond and accuracy. There are two types

Solution to Problem Set 1

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Section 7.4: Exponential Growth and Decay

Chapter 3 Chemical Equations and Stoichiometry

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

Higher. Exponentials and Logarithms 160

Question 3: How do you find the relative extrema of a function?

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Uses for Binary Trees -- Binary Search Trees

CHAPTER 4c. ROOTS OF EQUATIONS

MATH PLACEMENT REVIEW GUIDE

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS

Menu Structure. Section 5. Introduction. General Functions Menu

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

CS 316: Gates and Logic

Link-Disjoint Paths for Reliable QoS Routing

Punching of flat slabs: Design example

AC Circuits Three-Phase Circuits

Network Analyzer Error Models and Calibration Methods

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS

December Homework- Week 1

Math 22B, Homework #8 1. y 5y + 6y = 2e t

1 Fractions from an advanced point of view

Fundamentals of Tensor Analysis

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES

Jesus Performed Miracles

Adverse Selection and Moral Hazard in a Model With 2 States of the World

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks

New Basis Functions. Section 8. Complex Fourier Series

AP Calculus AB 2008 Scoring Guidelines

Who uses our services? We have a growing customer base. with institutions all around the globe.

A Note on Approximating. the Normal Distribution Function

Chapter. Contents: A Constructing decimal numbers

( 1 ) Obtain the equation of the circle passing through the points ( 5, - 8 ), ( - 2, 9 ) and ( 2, 1 ).

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant:

c b N/m 2 (0.120 m m 3 ), = J. W total = W a b + W b c 2.00

Why An Event App... Before You Start... Try A Few Apps... Event Management Features... Generate Revenue... Vendors & Questions to Ask...

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

Mandatory Standards and Organizational Information Security

Words Symbols Diagram. abcde. a + b + c + d + e

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

Providing Protection in Multi-Hop Wireless Networks

INTEGRATING FACTOR METHOD

Economics 340: International Economics Andrew T. Hill Nontariff Barriers to Trade

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP)

Campus Sustainability Assessment and Related Literature

Standard Conditions for Street Traders The Royal Borough of Kensington and Chelsea. Revised standard conditions for street trading

Predicting Current User Intent with Contextual Markov Models

Lec 2: Gates and Logic

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Dr David Dexter The Parkinson s UK Brain Bank

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Network Decoupling for Secure Communications in Wireless Sensor Networks

Lecture 20: Emitter Follower and Differential Amplifiers

Microanalyses of Ferroelectric Properties of BaTiO 3

The Laplace Transform

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

How To Get A Usb Power Button On Your Computer (For A Free) For A Year (For Free) (For An Ipad) (Free) (Apple) (Mac) (Windows) (Power) (Net) (Winows

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Constrained Renewable Resource Allocation in Fuzzy Metagraphs via Min- Slack

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0

Operational Procedure: ACNC Data Breach Response Plan

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

Graphs on Logarithmic and Semilogarithmic Paper

Maximum area of polygon

Form: Parental Consent for Blood Donation

MODULE 3. 0, y = 0 for all y

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS

Lecture 3: Diffusion: Fick s first law

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation

Linear and quadratic Taylor polynomials for functions of several variables.

Chapter 30: Magnetic Fields Due to Currents

Solutions for Review Problems

Usability Test Checklist

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Ratio and Proportion

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

( c) ( t) c denotes the peak rate for the elastic flow. For stream traffic we use the utility function (see Fig. 2): c i 1 (2) T dur

ROBERT D. MCHUGH, JR., Ph.D. FINANCIAL MARKETS FORECAST & ANALYSIS A Publication of Main Line Investors, Inc.

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Problem Set 6 Solutions

Transcription:

85 Chptr 6 Exri 6. From Exri 5., w know tht th ingl-rror ttor for 2-out-of-5 o (; ; ; ; ) i implmnt y th xprion: E(; ; ; ; ) = + + + + + + + + + + + + + Uing only gt from Tl 4. of th txtook w n gnrt ll prout trm ut th OR oprtion of ll 4 prout trm mut implmnt y tr of gt. To minimiz th ly in th implmnttion, w houl u NAND gt. Th gnrtion of th prout trm i on uing 3 n 4-input NAND gt from Tl 4.. A 4-input NAND howvr i not vill n houl otin omining mllr gt. Th lrg NAND gt my ompo into mllr on follow (for 4-input NAND to 2-input NAND): Th poiiliti r: Ntwork () =() +() t plh Dly A - Firt Lvl: NAND-6, NAND-8, Son Lvl: OR-2.4+.37L.64+.9L B - Firt Lvl: NAND-4, 2 NAND-5, Son Lvl: OR-3.37+.38L.7+.22L C - Firt Lvl: 2 NAND-3, 2 NAND-4, Son Lvl: OR-4.27+.38L.62+.25L Evn though th LH trnition ly ofntwork C i l thn th on for ntwork A, th HL trnition ly of ntwork C om wor whn th output lo i grtr or qul to 3. For thi ron w onir ntwork A th implmnttion of th 4-input NAND, in it i going to l uptil to output lo vlu. Th rulting iruit i prnt in Figur 6., on pg 86. Th ly of th ntwork i otin from th ritil pth NAND-4! NAND-6! OR-2 or NAND-3! NAND-8! OR-2: t phl T plh (nt) = mx(t phl (NAND-4) + t plh (NAND-6) + t plh (OR-2); t phl (NAND-3) + t plh (NAND-8) + t plh (OR-2)) = mx(:2 + :5 + :24 + :37 + :2 + :37 L; :9 + :39 + :24 + :38 + :2 + :39L) = mx(:57 + :37L; :53 + :37L) = :57 + :37L T phl (nt) = mx(t plh (NAND-4) + t phl (NAND-6) + t phl (OR-2); t plh (NAND-3) + t phl (NAND-8) + t phl (OR-2)) = mx(: + :37 + :36 + :9 + :2 + :9 L; :7 + :38 + :42 + :9 + :2+:9L) = mx(:72 + :9 L; :75 + :9L) = :75 + :9L

86 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 f(,,,,) Figur 6.: Singl-rror ttor for 2-out-of-5 o Exri 6.2 Lt u u th xprion otin in Exri 5.2 (only output vril' nm wr hng): = x y in + x y in + x y in + x y in = x x y in + x y y in + x x y y + x x y in + x y y in + x x y y + x x y in + x y y in + x x y y + x y y in + x x y in + x x y y out = x y + x x y + x y y + y y in + x y in + x x in + x y in Th ojtiv of th ign i to ru th numr of gt hring untwork mong th output, th mnipultion of th xprion follow:

Solution Mnul - Introution to Digitl Dign - Frury 2, 999 87 = (x y + x y ) in +(x y + x y ) in = (x y ) in +(x y ) in = (x y ) in = x (x y in + y y in + x y y + x y in + y y in + x y y ) +x (x y in + y y in + x y y + y y in + x y in + x y y ) = x (y A + y B)+x (y A + y B) = (x y + x y )A +(x y + x y )B =(x y ) A +(x y )B whr A = x in + y in + x y n B = x in + y in + x y. It n hown tht B = A, n th xprion for om: For th out output w otin: = x y A out = x y + x A + y A = x (y + A)+y (x + A) = x (y + y A)+y (x + x A) = x y + x y A + x y A = x y +(x y + x y )A = x y +(x y )A Th xprion for A n lo trnform to th following mor onvnint form: A = x in + y in + x y = x ( in + y )+y ( in + x ) = x ( in y + y )+y ( in x + x ) = x in y + x y + y in x = (x y ) in + x y Th gt ntwork i hown in Figur 6.2 on pg 88. Exri 6.3 A high-lvl pition for thi ytm i: Input: x i iml igit rprnt in BCD. Output: two BCD igit y n z. Funtion: y + z =3x. From thi pition w n th following withing funtion: x 3 x 2 x x y 3 y 2 y y z 3 z 2 z z

88 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 x y in x y A out Figur 6.2: Ntwork of Exri 6.2 Th impli withing xprion r otin from K-mp (not hown): y 3 = y 2 = y = x 3 + x 2 x x y = x 2 x + x 2x z 3 = x 2 x x + x 2 x x z 2 = x 3 + x 2 x x + x 2 x x z = x 2 x x + x 2 x x + x 2 x x z = x Th (NAND;NAND) ntwork i hown in Figur 6.3. Exri 6.4 A high-lvl pition for th ytm i: Input: A, B, oth iml igit in Ex-3 o. Output: Y 2fG; E; Sg Funtion: Y = 8 >< >: G E S if A>B if A = B othrwi Th input r rprnt A =( 3 ; 2 ; ; ) n B =( 3 ; 2 ; ; ). Th output i no : Y =(y ;y )= 8 >< >: (; ) if A<B (; ) if A = B (; ) if A>B Th ntwork oul ign pilly for th Ex-3 o, in whih it woul mk u of th orrponing on't r, or on n u 4-it inry omprtor. Th rt pproh might giv implr ntwork, ut it i iult to ign u th implition woul rquir K-mp of ight vril (or th u of om tulr minimiztion thniqu). Morovr, th

Solution Mnul - Introution to Digitl Dign - Frury 2, 999 89 y3 y2 x3 x x y x x x x x x x x x x x3 y z3 z2 x x x x x x x z z Figur 6.3: Ntwork of Exri 6.3 rution woul only vli for two-lvl ntwork, whih i quit omplx nyhow (u of th ight input vril). Conquntly, w ign 4-it inry omprtor. It i n xtnion to four it of th 2-it omprtor ri in th txtook. Thrfor, w n writ irtly th following withing xprion: Equl = w 3 w 2 w w Grtr = 3 3 + w 3 2 2 + w 3w 2 + w 3w 2 w whr w i = i i + i i Du to th o lt, th output r y = Grtr n Th ntwork i hown in Figur 6.4. y = Equl Exri 6.5: Th moition of th ntwork of Exmpl 4.6 i hown in Figur 6.5. Sin w r k to u 4 omplx gt 2-AND/NOR2, th t olution i to u thm on th lvl tht h y i n w i input. Th fourth on houl not u to gnrt z 2 in thi output i ompo of 3 prout n th omplx gt i l to hnl only 2. Mor logi i rquir to gnrt th thir prout n omin it with th output of th omplx gt (tht woul

9 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 W 3 3 2 2 W W W w3 w3 w2 w w 3 3 w3 2 w2 2 w3 w2 w w3 w2 w w y y Figur 6.4: Ntwork of Exri 6.4 tk r of 2 prout). For thi ron, it i mor intrting to u th fourth omplx gt to gnrt z n kp th m trutur of gt tht w u in Exmpl 4.6 to gnrt z 2. Although th output of AN3 orrpon to z w in't u it output th ntwork output to voi th inun of th z output lo on th ly of th othr output. Th ntwork hrtriti r: Lo ftor: Fnout ftor: oniring F =2whv F (z 2 )=F (z )=F (z )=2 Ntwork iz: Th NOT gt hv iz n ll othr hv iz 2, thu th ntwork h 23 quivlnt gt. Th iz of th ntwork on Exmpl 4.6 w 38 quivlnt gt. Numroflvl: 6 Ntwork ly: onir th following tl for gt ly: gt Intir Output Lo t plh (n) t phl (n) OR3 O 4.27.43 NOT N/N4 3.3. 2-AND/NOR2 AN2/AN3 3.4.8 2-AND/NOR2 AN4.25.3 2-AND/NOR2 AN 2.32.6 NOT N2/N3 2..8 NOT N5 L :2 + :38L :5 + :7L AND3 A3.24.2 OR3 O2 L 2 :2 + :38L 2 :34 + :22L 2 Th rt ritil pth w my onir i O! N! AN! N2! A3! O2 tht rult in th following ly: T plh (x ;z 2 ) = t phl (O) + t plh (N) + t phl (AN) + t plh (N2) + t plh (A3) + t plh (O2)

Solution Mnul - Introution to Digitl Dign - Frury 2, 999 9 y2 w2 y w y w x x O N 2-AND/NOR2 AN AN2 AN3 N2 N3 N4 ANx A A2 A3 AN4 N6 O2 N5 z z2 z Figur 6.5: Ntwork for Exri 6.5 = :428 + :34 + :56 + :96 + :24 + :2 + :38L 2 =:7 + :38L 2 T phl (x ;z 2 ) = t plh (O) + t phl (N) + t plh (AN) + t phl (N2) + t phl (A3) + t phl (O2) = :272 + : + :32 + :84 + :2+:34 + :22L 2 =:32 + :22L 2 Anothr pth tht my onir i O! N! AN2! N3! AN4! N5, tht rult in th following ly: T plh (x ;z ) = t phl (O) + t plh (N) + t phl (AN2) + t plh (N3) + t phl (A4) + t plh (N5) = :428 + :34 + :84 + :96 + :28 + :2 + :38L =:99 + :38L T phl (x ;z ) = t plh (O) + t phl (N) + t plh (AN2) + t phl (N3) + t plh (A4) + t phl (N5) = :272 + : + :395 + :84 + :245 + :5 + :7L =:5 + :7L W n tht th pth from x to z 2 i till th ritil pth in thi iruit, howvr, th ly w ru whn ompr to Exmpl 4.6. Exri 6.6: A high-lvl pition for th ytm i: Input: x; y 2f; ; 2; 3g Output: z 2fG; E; Sg. Funtion: W no th output follow: z = 8 >< >: G E S if x>y if x = y if x<y

92 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 From thi noing w writ: z z 2 z z G E S z 2 = G = x y + SAME(x ;y )x y z = E = SAME(x ;y )SAME(x ;y ) z = S = x y + SAME(x ;y )x y whr SAME(x; y) =xy + x y =(x y ). Sin xy, x y n SAME(x; y) r mutully xluiv, th OR oprtion my writtn n Exluiv-OR oprtion, follow: z 2 = G = x y (x y)x y z = E =(x y)(x y) z = S = x y (x y )x y Th NOT gt i implmnt uing XOR gt : x = x. Thu, w n trnform th ov xprion follow: Th gt ntwork i hown in Figur 6.6 z 2 = G = x (y ) (x y )x (y ) z = E =(x y )(x y ) z = S =(x )y (x y )(x )y y y x z2=g y y x x x x x y y z=s x z=e x Figur 6.6: Ntwork for Exri 6.6

Solution Mnul - Introution to Digitl Dign - Frury 2, 999 93 Exri 6.7 Uing XOR gt it' poil to gt th xprion for qulity or irn: SAME = x y DIFFERENT = x y Uing th xprion, w otin th xprion for h output, z 2 (GREATER), z (EQUAL) n z (LESS) : z 2 = DIFFERENT:x+ SAME: 2 z = SAME: z = DIFFERENT:y+ SAME: Th gt ntwork uing XOR n NAND gt i hown in Figur 6.7, on pg 93. x y SAME z x y 2 x DIFFERENT z2 y z Figur 6.7: Comprtor uing XOR n NAND gt Exri 6.8 Th omplmntr i ri y th xprion: z i = x i Th ntwork tht implmnt 4-it omplmntr uing only XOR gt i prnt in Figur 6.8, on pg 94. Exri 6.9 Th funtion i n : (x; y; ) =x + y n uing thi funtion w wnt to rprnt th following funtion uing mux: OR(; ) = + = + = (; ; ) NOR(; ) =( + ) = =: + = (; ;)

94 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 xo z x z x3 z2 z3 Figur 6.8: Complmntr uing XOR gt NAND(; ; ) = NAND(; AND(; )) AND(; ) = +: = (; ;) NAND(; z) =(z) = + z = z +:z = ( ; ;z) Thu NAND(; ; ) = ( ; ; (; ;)) XOR(; ) = = + = ( ;;) XNOR(; ) = = + = (; ;) Exri 6. From th ntwork in Figur 6.3 w n otin th following xprion for th ltion ignl (whih ontrol th rightmot multiplxr), n th output ignl z n z 2 : = + =( ) z = + = = z 2 = + = ( + )+( + ) = + + = ( + )+( + ) = ( + )+( + ) = + + From th ooln xprion w n tht z = orrpon to th high-lvl ription: z =( + + ) mo2 n z 2 = whn 2 or mor input hv th vlu. Th qution orrpon to um n rry-out output of on-it r, with input ;, n.

Solution Mnul - Introution to Digitl Dign - Frury 2, 999 95 Exri 6. Tr of multiplxr: Prt () E(; ; ; ) = + + + + W u Shnnon' ompoition to otin th following four xprion: E(; ; ; ) = + + = + = + E(; ; ; ) = + + = + E(; ; ; ) = + = E(; ; ; ) = + = + =() From th xprion w otin th tr of multiplxr hown in Figur 6.9. E(,,,) E(,,,) E(,,,) E(,,,) E(,,,) E(,,,) Figur 6.9: Multiplxr tr for E(; ; ; ) = + + + + Prt () E(; ; ; ; ; f) = f Uing th m typ of ompoition w gt th funtion hown in th nxt tl: (; ; ; f) E(; ; ; ; ; f) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

96 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 Th tright implmnttion of th tr of multiplxr will look lik th ntwork hown in Figur 6.(). Simplifying th ntwork y rmoving th rpt trm w otin th ntwork hown in Figur 6.(), tht look mor lik linr rry thn tr, ut h th m numr of lvl n l mux. = + E(,,,,,f) f = + f E(,,,,,f) () full multiplxr tr ntwork () implifi ntwork Figur 6.: Multiplxr ntwork for Exri 6. - prt () - E(; ; ; ; ; f) =f A ttr multiplxr tr ntwork i rliz oniring th implmnttion of th XOR n XNOR funtion ymultiplxr (Exri 6.9) n th oitivity of th XOR funtion follow: f =[( ) ( )] ( f) Th ntwork for thi i prnt in Figur 6.. Orv tht it h only 3 lvl of multiplxr in th ritil pth n 7 multiplxr. Th prviou implmnttion h 5 lvl n u 9 multiplxr. Exri 6.2 From Exri 6.6, n oniring tht th input numr r rprnt x =(x ;x ) n y =(y ;y ), w hv th following xprion for th output x = y (E), x>y (G) or x<y(s): G(x ;x ;y ;y ) = x y + x y y + x x y

Solution Mnul - Introution to Digitl Dign - Frury 2, 999 97 xor E(,,,,,f) ( xor ) xor f xor f Figur 6.: Implmnttion uing XOR proprty to olv Exri 6.() - E(; ; ; ; ; f) = f By ompoition w otin: E(x ;x ;y ;y ) = (x y + x y )(x y + x y ) S(x ;x ;y ;y ) = x y + x y y + x x y G(x ;x ; ; ) = x + x + x x = x + x = (x ; ;x ) G(x ;x ; ; ) = x G(x ;x ; ; ) = x x = (x ; ;x ) G(x ;x ; ; ) = E(x ;x ; ; ) = x x = (x ; ;x ) E(x ;x ; ; ) = x x = (x ; ;x ) E(x ;x ; ; ) = x x = (x ; ;x ) E(x ;x ; ; ) = x x = (x ; ;x ) S(x ;x ; ; ) = S(x ;x ; ; ) = x x = (x ; ;x ) S(x ;x ; ; ) = x S(x ;x ; ; ) = x + x + x x = x + x = (x ; ;x ) tht orrpon to th ntwork of multiplxr hown in Figur 6.2.

98 Solution Mnul - Introution to Digitl Dign - Frury 2, 999 x x x y G x y x y x x x y y E x y x x y S x x y x y Figur 6.2: Ntwork for Exri 6.2