Lab 6. Cellular Reproduction: Mitosis and Meiosis

Similar documents
LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

The cell cycle, mitosis and meiosis

List, describe, diagram, and identify the stages of meiosis.

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

Cell Growth and Reproduction Module B, Anchor 1

CHAPTER 10 CELL CYCLE AND CELL DIVISION

Lecture 7 Mitosis & Meiosis

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

The illustrations below reflect other scientists results in identifying and counting the stages of the onion root tip and the whitefish blastula.

Meiosis is a special form of cell division.

Biology 3A Laboratory MITOSIS Asexual Reproduction

The Huntington Library, Art Collections, and Botanical Gardens

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

Cellular Reproduction

PSI Biology Mitosis & Meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

CHAPTER 9 CELLULAR REPRODUCTION P

From DNA to Protein

Chapter 13: Meiosis and Sexual Life Cycles

Cell Division Mitosis and the Cell Cycle

Chapter 13: Meiosis and Sexual Life Cycles

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY

The Somatic Cell Cycle

Lecture 2: Mitosis and meiosis

CELL DIVISION. STAGES OF MITOTIC DIVISION (Diag. C1)

Appendix C DNA Replication & Mitosis

Mitosis in Onion Root Tip Cells

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

Cell Cycle in Onion Root Tip Cells (IB)

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle.

1. Identify each phase of mitosis on the onion root tip and the whitefish blastula. 3. Explain differences in mitosis between plant and animal cells.

Sexual Reproduction. and Meiosis. Sexual Reproduction

Use of the Microscope and Cytology

Workshop: Cellular Reproduction via Mitosis & Meiosis

Lecture 11 The Cell Cycle and Mitosis

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction

LABORATORY 2 THE CELL CYCLE AND THE STAGES OF MITOSIS LEARNING OBJECTIVES AFTER COMPLETING THIS LABORATORY, YOU SHOULD BE ABLE TO:

Sexual Reproduction and Meiosis

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Germ cell formation / gametogenesis And Fertilisation

Cell Division Simulation: Bacteria Activity One

LAB 09 Cell Division

Guided Notes: Chapter 9 Cellular Reproduction

Mitosis, Meiosis and Fertilization 1

CCR Biology - Chapter 5 Practice Test - Summer 2012

Cell Division and Mitosis DNA. Sexual Reproduction and Meiosis. 2. Meiosis occurs in the reproductive organs, producing four haploid sex cells.

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

1.1 Introduction. 1.2 Cells CHAPTER Prokaryotic Cells Eukaryotic Cells

The chromosomes are structures in living cells that contain

The Cell Cycle: A series of modeling activities

Sample Questions for Exam 3

the plant & animal cell

How Well Do You Know Your Cells?

Lab 3: Testing Hypotheses about Mitosis

Classify chromosomes in a karyotype according to size and centromere position. Identify metacentric, submetacentric and acrocentric chromosomes

Practice Problems 4. (a) 19. (b) 36. (c) 17

Test Two Study Guide

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts.

Look for these related items from Learning Resources :

Laboratory Observing the Cell Cycle of Onion Root Tip Cells

Teacher s Guide. Mitosis. Grades 5-9 MTTV

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns

Respiration occurs in the mitochondria in cells.

Bio 101 Section 001: Practice Questions for First Exam

Time For Mitosis. Materials. Procedure. Name

Contains chromatin that makes chromosomes (DNA and protein)

02-SciProbe9-Chap02 2/8/07 12:12 PM Page NEL

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome.

Name: Class: Date: ID: A

The Cell Interior and Function

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes.

Addition by Division TEACHER NOTES SCIENCE NSPIRED

8 kcal/mole of ATP 2 ATP 16 kcal 16 kcal/2 moles of ATP 686 kcal/mole of glucose 2.3%

OBJECTIVES PROCEDURE. Lab 2- Bio 160. Name:

AP BIOLOGY 2012 SCORING GUIDELINES

12.1 The Role of DNA in Heredity

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Prokaryotic and Eukaryotic Cells

June examination memorandum G12 ~ Life Sciences LIFE SCIENCES GRADE 12 JUNE EXAMINATION 2014 MEMORANDUM

The Nucleus: DNA, Chromatin And Chromosomes

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

Chapter 8: Variation in Chromosome Structure and Number

Cell Structure and Function

Cells & Cell Organelles

Review of the Cell and Its Organelles

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Chapter 38: Angiosperm Reproduction and Biotechnology

UNIT 1 - CHAPTER 3: CELLS. 2. Describe the general characteristics of a composite cell.

Section 24 1 Reproduction With Cones and Flowers (pages )

MCAS Biology. Review Packet

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Transcription:

Lab 6. Cellular Reproduction: Mitosis and Meiosis Cell Division - Mitosis Sexually-reproducing, multicellular organisms begin life as a single cell, the fertilized egg. This cell, the zygote, through the process of mitosis (nuclear division) and cytokinesis (cytoplasmic division), becomes two daughter cells, which in turn become four cells, eight, sixteen, thirty-two, etc. as each cell continues to divide. At a particular point in this process of development (or embryogenesis), cells begin to differentiate into different types of cells that will perform specialized roles in the functioning of the whole organism. The information that controls the behavior and differentiation of each cell is carried in the chromosomes. In previous labs, you saw dark-staining nuclei in cells. These nuclei stain darkly because the chromosomes in the cells were unwound, forming diffuse chromatin in the nucleus. This is the way that the chromosomes are when they are actively functioning to direct the cell s function. When cells reproduce, this diffuse chromatin becomes reduced into discrete bodies (chromosomes) through a complex coiling process. Chromosomes are the packages in which genetic information is passed during cell division. Chromosomes typically occur in homologous pairs (in diploid organisms). The number of pairs of chromosomes and the size and shape of each pair are characteristic and constant for a given kind of organism. Humans, for example, have 23 pairs of homologous chromosomes in each of their cells (except for egg and sperm cells), while the fruit fly, Drosophila melanogaster, has 4 pairs. Prior to cell division, a cell synthesizes a duplicate of each chromosome. Duplicate chromosomes remain attached to one another in a region called the centromere until the actual division process occurs. While attached to one another, each duplicate is called a chromatid, and the two together - sister chromatids. It is important to remember that, although each chromosome is at this point doubled, consisting of two sister chromatids connected at the centromere, they still represent only ONE CHROMOSOME. They will not become separate chromosomes until they have separated from each other. Mitosis (nuclear division) consists of the separation of the sister chromatids. As they separate, the cytoplasm with its constituent organelles is divided approximately equally between the daughter cells, a process called cytokinesis. The outcome of mitotic cell division is two identical cells with identical sets of chromosomes. Mitosis and cytokinesis are key processes in the growth and development of an organism. They are also the means by which wounds are repaired and dead cells are replaced. Details of Mitotic Cell Division Mitosis is part of the normal cell cycle. There are three general portions of the cell cycle: Interphase, Mitosis, and Cytokinesis. Interphase In interphase, the cell is actively growing, respiring, and synthesizing DNA, RNA, and proteins. Nuclear material is surrounded by a membrane. The dark-staining nucleoli are visible within the nucleus. Collectively, the chromosome mass is called chromatin. The chromosomes are not individually distinguishable because they are 1

uncoiled into long thin strands and appear only as dark granules within the nucleus. Chromosomes and organelles are duplicated during interphase. Mitosis The phases of mitosis are: Prophase, Metaphase, Anaphase, and Telophase. Prophase - The nuclear membrane and nucleoli break down. Chromosomes appear first as thin threads, and later as thicker, distinct bodies as they coil up. At this point, each chromosome contains two DNA molecules organized as sister chromatids held together by a centromere. The spindle, a structure composed of microtubules forms, although it may not be easily visible until the next stage. In animal cells, the formation of the spindle appears to be associated in some way with the centrioles, which move in opposite directions. The centrioles may have something to do with organizing the spindle. However, a spindle forms in a dividing plant cell, yet plant cells lack centrioles. In animal cells, additional microtubules radiate from the centrioles and form a star-shaped aster. Centrioles and asters have not been found in the cells of higher plants. Metaphase - The chromosomes move to the equatorial plane of the cell, and line up along the equator. It is useful to think of the chromosomes lining up end-to-end in metaphase of mitosis, although it doesn t actually happen this way. Anaphase - The centromeres holding sister chromatids together split apart, and sister chromatids move away from each other towards opposite ends of the cell. Telophase - Nuclear division is completed in telophase. The chromosomes are now at each end of the cell. New nuclear membranes begin to form around each group of chromosomes, and the chromosomes begin to uncoil. It is often difficult to distinguish late anaphase from early telophase. It should be remembered that mitosis is a continuous process (not stopping between each phase) and as such, each phase gradually grades into the next. Cytokinesis Cytokinesis usually begins during telophase. Cytokinesis is the division of the cytoplasm into two separate cells. In animal cells, the first sign of this splitting of cytoplasm is the formation of a crease around the cell, a cleavage furrow. As cytokinesis continues, the furrow becomes deeper and deeper, finally pinching the parent cell into two daughter cells. In plant cells, division of the cytoplasm results from the formation of a cell plate across the center of the cell. This cell plate forms internally in the cell as the result of Golgi vesicles lining up and fusing. Once mitosis and cytokinesis are complete, the daughter cells may again enter interphase of the cell cycle. 2

Observing mitosis and cytokinesis in plant cells: Onion root tip. Obtain a slide of an onion root tip. Examine it with the scanning objective lens, and locate the region of active cell division just behind the dead cells at the tip of the root. Focus on this region, and switch to the medium-power objective. Focus again and switch to the high-power objective lens. Find cells in each of the following stages: Interphase, Prophase, Metaphase, Anaphase, Telophase, Early Cytokinesis. Draw representative cells on the paper provided, labeling all structures. Because all the cells on your slide were stopped at once, the relative numbers of cells in each phase of the cell cycle provide a rough estimate of the relative duration of each phase. After you have drawn cells in each phase and are familiar with their appearance, count the number of cells in each of the six stages above that appear in ONE field of view under the high-power objective (40X). Record your data below. How many cells are in interphase? How many cells are in prophase? How many cells are in metaphase? How many cells are in anaphase? How many cells are in telophase? How many cells are in early cytokinesis? Which is the longest portion of the cell cycle? Which portions of the cell cycle are very brief? Observing mitosis and cytokinesis in animal cells: Whitefish Blastula The most convenient source of actively dividing cells in animals is the early embryo, where cells are large and divide rapidly with a short interphase. In the blastula (an early embryonic stage), a large percentage of cells will be dividing at any given time. By examining a cross section of a whitefish blastula, you should be able to locate many dividing cells in various stages of mitosis and cytokinesis. Obtain a slide of a whitefish blastula. Find a cross section using the scanning objective, switch to the 10X objective, focus, and switch to the 40X objective. Find the six stages of the cell cycle above, and draw and label what you see in each stage on the paper provided. Although the behavior of the chromosomes is the same as in plant cells, several distinctive animal structures should be visible: Centrioles - small dots at the poles around which the microtubules of the spindle seem to organize. Asters - a star-like array of microtubules surrounding each centriole pair. Cleavage Furrow - a constriction near the center of the dividing cell 3

Meiosis Meiosis takes place in all organisms that reproduce sexually. Meiosis is necessary in sexually reproducing organisms because it prevents the chromosome number from doubling with every generation when fertilization occurs. Meiosis is the process by which the gametes (sperm and eggs) are produced. In animals, it only occurs in the gonads, while in plants it only occurs in structures called sporangia. Meiosis consists of two nuclear divisions, meiosis I and II, with an atypical interphase between the divisions during which cells do not grow or synthesize DNA. This means that meiosis I and II result in a sum total of four cells from each parent cell. Each new cell contains half the number of diploid chromosomes, one chromosome from each homologous pair. Recall that cells with only one of each homologous pair of chromosomes are called haploid cells. Meiosis I Prophase I - Chromosomes coil and condense as they do in mitosis. The nuclear envelope and nucleoli break down. However, in meiosis, there is another essential event in prophase I. Homologous chromosomes, each composed of two sister chromatids, come together and coil around each other. This is called synapsis. While synapsed, the pair of chromosomes are called a tetrad. During synapsis, chromatids of homologous chromosomes exchange or trade pieces of DNA. This exchange of genetic material is called crossing over or recombination. Metaphase I - Chromosomes move to the equatorial region of the cell as tetrads. In other words, the homologous pair goes to the center of the cell together. It is useful to think of the pair of them lying there side-by-side (as opposed to end-to-end like in mitosis). Anaphase I - Each chromosome (consisting of two sister chromatids held together at the centromere) separates from its homologue and one homologue of each pair moves toward each pole. Telophase I - The homologous chromosomes have aggregated at opposite poles. Cytokinesis begins and divides the original cell into two haploid daughter cells. It is by the end of Meiosis I that the resulting two cells have reduced their chromosome number by half. Although each chromosome in each cell still consists of two sister chromatids connected by a centromere, there are half as many chromosomes as in the original parent cell. Meiosis II Interphase - no DNA synthesis occurs Prophase II - No synapsis or crossing over occurs because the cell contains no homologous pairs to cross over with. Chromosomes condense. 4

Metaphase II - The chromosomes move to the midline of the cell again. This time, they line up just like in mitosis. You can imagine them as being end-to-end. Anaphase II - Each centromere splits, and the single-chromatid chromosomes thus formed move away from each other toward opposite ends of the spindle Telophase II - the chromosomes begin to unwind, cytokinesis begins, and the nuclear membrane re-forms. Differences between the sexes in the products of meiosis Although the process is identical, the products of meiosis differ between males and females because of differences in the allocation of cytoplasm during cytokinesis. In males, the cytoplasm is divided equally between the daughter cells both during the first meiotic division and during the second. This results in four equal-sized cells being produced by one initial cell after meiosis. These four cells will become the sperm. In females, the allocation of the cytoplasm is unequal during both meiotic divisions. This results in one larger daughter cell, and one smaller cell (the polar body) produced each time. During cytokinesis after meiosis I, the smaller daughter cell becomes the first polar body, and the larger cell will eventually give rise to the ovum after meiosis II. During meiosis II, this larger cell also divides unequally with respect to its cytoplasm, and the smaller cell becomes the second polar body. The larger cell, with most of the cytoplasm, is now the ovum. The polar bodies do not function. Thus, in females, only one functional cell (the ovum) is produced by meiosis from one initial cell. The other two or three products (the polar bodies) degenerate. On the paper provided, draw a complete meiotic cycle for both males and females. Assume that this organism has a diploid number of 4, two long chromosomes and two short chromosomes. The dark chromosomes came from the father, and the light chromosomes from the mother. You will begin in prophase I, with the chromosomes already duplicated. Be sure to show synapsis and crossing over, the alignment of the chromosomes at both metaphase I and II, and the cytoplasmic allocation during cytokinesis in each sex. 5

Mitosis in onion root tip All drawings are done at total magnification = 400X Label (where present): cytoplasm, nucleus, nucleolus (nucleoli), chromatin, spindle, chromosomes, cell plate, daughter cells. Interphase Prophase Metaphase Anaphase Telophase Recent Cytokinesis 6

Mitosis in whitefish blastula All drawings are done at total magnification = 400X Label (where present): cytoplasm, nucleus, nucleolus (nucleoli), chromatin, spindle, chromosomes, cell plate, daughter cells. Interphase Prophase Metaphase Anaphase Telophase Recent Cytokinesis 7

Meiosis in Males Prophase I Metaphase I Anaphase I Telophase I (and Cytokinesis) Prophase II Metaphase II Anaphase II Telophase II (and Cytokinesis) 8

Meiosis in Females Prophase I Metaphase I Anaphase I Telophase I (and Cytokinesis) Prophase II Metaphase II Anaphase II Telophase II (and Cytokinesis) 9