How does natural selection change allele frequencies?

Similar documents
Hardy-Weinberg Equilibrium Problems

Biology Notes for exam 5 - Population genetics Ch 13, 14, 15

7 POPULATION GENETICS

LECTURE 6 Gene Mutation (Chapter )

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Continuous and discontinuous variation

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Genetics Lecture Notes Lectures 1 2

Chapter 9 Patterns of Inheritance

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Practice Questions 1: Evolution

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted

Mendelian Genetics in Drosophila

Chapter 4 The role of mutation in evolution

2 GENETIC DATA ANALYSIS

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Population Genetics and Multifactorial Inheritance 2002

Heredity - Patterns of Inheritance

Answer Key Problem Set 5

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Chromosomes, Mapping, and the Meiosis Inheritance Connection

GENETIC CROSSES. Monohybrid Crosses

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution by Natural Selection 1

Tuesday 14 May 2013 Morning

5 GENETIC LINKAGE AND MAPPING

Mendelian inheritance and the

Trasposable elements: P elements

10 Evolutionarily Stable Strategies

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Mendelian and Non-Mendelian Heredity Grade Ten

AP BIOLOGY 2010 SCORING GUIDELINES (Form B)

Basics of Marker Assisted Selection

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

Name: Class: Date: ID: A

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

A Study of Malaria and Sickle Cell Anemia: A Hands-on Mathematical Investigation Student Materials: Reading Assignment

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

The Making of the Fittest: Natural Selection in Humans

Process 3.5. A Pour it down the sink. B Pour it back into its original container. C Dispose of it as directed by his teacher.

I. Genes found on the same chromosome = linked genes

Lecture 10 Friday, March 20, 2009

MOT00 KIMURAZ. Received January 29, 1962

The Genetics of Drosophila melanogaster

7A The Origin of Modern Genetics

Chapter 13: Meiosis and Sexual Life Cycles

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Biology Final Exam Study Guide: Semester 2

Incomplete Dominance and Codominance

Bio 102 Practice Problems Mendelian Genetics and Extensions

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

FAQs: Gene drives - - What is a gene drive?

Lesson Plan: GENOTYPE AND PHENOTYPE

Genetics 301 Sample Final Examination Spring 2003

Instructor s Key for GloFish Protocol

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

Genetics Module B, Anchor 3

HUMAN SKIN COLOR: EVIDENCE FOR SELECTION

BCOR101 Midterm II Wednesday, October 26, 2005

PRINCIPLES OF POPULATION GENETICS

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

Genetics and Evolution: An ios Application to Supplement Introductory Courses in. Transmission and Evolutionary Genetics

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

Math 3C Homework 3 Solutions

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism

Two copies of each autosomal gene affect phenotype.

AP PHYSICS 2012 SCORING GUIDELINES

HLA data analysis in anthropology: basic theory and practice

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

Elementary Statistics Sample Exam #3

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

ECON Game Theory Exam 1 - Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted.

CHROMOSOMES AND INHERITANCE

Genomes and SNPs in Malaria and Sickle Cell Anemia

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Bacterial Transformation Post lab Questions:

Genetics for the Novice

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Section 1.4. Difference Equations

Gene Mapping Techniques

DNA Determines Your Appearance!

Popstats Unplugged. 14 th International Symposium on Human Identification. John V. Planz, Ph.D. UNT Health Science Center at Fort Worth

Practice Problems 4. (a) 19. (b) 36. (c) 17

Principles of Evolution - Origin of Species

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Keystone National Middle School Math Level 7 Placement Exam

Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes

CCR Biology - Chapter 7 Practice Test - Summer 2012

Transcription:

How does natural selection change allele frequencies? Alleles conferring resistance to insecticides and antibiotics have recently increased to high frequencies in many species of insects and bacteria. Numbers of insect species resistant to insecticides Year How did this happen (within a typical species)? Which of these factors (or others) do we need to include in the explanation? Anthro/Biol 5221, October 21, 23, 2014 Population size (N) Time to last common ancestor (T) Mutation rate (μ) Neutral polymorphism (π) Allele frequency (p) Survival probabilities of different genotypes Expected reproductive success of genotypes

Selection Selection is a bias in the relationship between p and p. That is, E(p ) p. Gillespie models it as a difference in survival to adulthood, which is caused by phenotypic effects of A 1 and A 2. But alternatively, it could be a difference in reproductive success among adults who had survived equally well regardless of genotype.

A general model of selection for two alleles (no mutation, no drift) Let p be the frequency of allele A 1 in the current generation [q = 1-p =freq(a 2 )]. Let p be its frequency next generation. Assume that the population mates at random with respect to genotypes at the A locus. (This does not require truly random mating!) Let W 11, W 12, and W 22 be the relative fitnesses (average surviving offspring) of the three diploid genotypes (A 1 A 1, A 1 A 2, A 2 A 2 ). The population s average fitness is a weighted mean of the genotypic fitnesses. Dividing the genotypic components of W-bar by W-bar gives the proportional reproductive contributions of the genotypes to next generation s gene pool.

Next generation s allele frequency p is the contribution of A 1 A 1 genotypes plus one half of the contribution of A 1 A 2 (since half of their gametes will be A 1 ). The term in square brackets is the average or marginal fitness of allele A 1 (because a proportion p of all A 1 alleles find themselves in A 1 A 1 homozygotes). Our updating rule or recurrence equation for p therefore reduces to If we subtract p we get the change in p expected in one generation: But the population s mean fitness can be rewritten as a weighted average of the allelic marginal fitnesses: By substituting the RHS into the equation for Δp (above) and simplifying, we get

Allele-frequency histories ( trajectories ) can easily be calculated by iterating the recurrence equation: p = f(p) (1) The rate of allelefrequency change is fastest at intermediate allele frequencies (when pq is greatest). (2) Rare recessive alleles (whether advantageous or harmful) are almost invisible to selection. (3) Smaller fitness differences lead to proportionally slower rates of allele-frequency change.

Fitnesses are often described by the selection coefficient (s) For example, it is common practice to write W 11 = 1, W 12 = 1-hs, andw 22 = 1-s. If h = 0, allele 1 is dominant. If h = 1, allele 2 is dominant. And if h = 0.5, the heterozygotes are intermediate in fitness (codominance or additivity). In the examples below, h = 0.5. In the first case (red), s = 0.2. In the last case (blue), s = 0.004.

An important special case: lethal recessive alleles W 11 = W 12 = 1 W 22 = 0 W 1 = 1 W 2 = [(1)½2pq + (0)q 2 ]/[pq+q 2 ] = p W = p(1) + q(p) = p(1+q) = p(2-p) p = p[w 1 /W] = p[1/p(2-p)] = 1/(2-p) E.g., suppose p = 0.5 Triangles and circles are data from two replicates of the experiment. Then p = 1/(2-0.5) = 1/1.5 = 0.67 Peter Dawson (1970) used a recessive lethal allele in the flour beetle (Tribolium confusum) to test this prediction of the model. His data are shown in the graphs on the right. The theoretical prediction is graphed as continuous gray lines. Amazing!

Modes of selection: directional, balancing and disruptive Selection may favor a certain allele unconditionally, regardless of its frequency. Such directional or positive selection, if continued, will sooner or later fix the favored allele (i.e., increase its frequency to 1.0). But there are other possibilities! 1. Balancing selection keeps two or more alleles at intermediate frequencies and prevents fixation. 2. Disruptive selection can fix either allele, if its frequency is already high enough. rr Rr RR A simple flower-color polymorphism in elderflower orchids (Dactylorhiza sambucina), controlled by two alleles at one genetic locus. From Gigord et al. (2001) PNAS 98, 6253-6255.

Two kinds of balancing selection: different processes, same result Heterozygote advantage or overdominance : fitness of A 1 A 2 > A 1 A 1, A 2 A 2. Negative frequency dependence: fitnesses go down as frequencies go up. Gillespie s example of heterozygote advantage W 11 = 1.0 W 12 = 1-hs = 1-(-0.5)(0.1) = 1+0.05 = 1.05 W 22 = 1-s = 1-0.1 = 0.9

The Mukai and Burdick experiment: another recessive lethal allele Like Dawson s experiment with flour beetles. But here the lethal allele (L) is not driven extinct by the viable allele (V). In fact, L increases from a low initial frequency! This implies that VL heterozygotes must be fitter than VV homozygotes. mostly V, little L equal frequencies of Lethal and Viable At equilibrium (when p(v) 0.8), which of these statements about the marginal fitnesses is true? 1. W V > W L 2. W V = W L 3. W V < W L

The best-understood case: hemoglobin S and falciparum malaria Where Hb S is common (light gray) Where malaria was common (darker gray) Both common (darkest gray) AA: standard β Hb AS: resists malaria SS: sickle-cell anemia Note how the fitnesses depend on the environment: AS is fitter than AA if (1) malaria is endemic and (2) there is no other defense.

Negative frequency dependence: where I m my own worst enemy Here the fitnesses of the genotypes (not just the marginal fitnesses of the alleles) depend on their own frequencies. In this made-up example, the fitness of the heterozygote is always half way between those of the homozygotes, so there s never any heterozygote advantage.

Frustrated bumblebees go to differently colored elderflower orchids Flowers give no reward to bees. Naïve bees alternate between colors. The rarer color therefore tends to get more visits per flower. Fitnesses equalize at P(yellow) = 0.6-0.7 in experimental populations (right). Natural populations have P(yellow) = 0.69.

Negative frequency dependence is probably very common. It will arise from competition for resources of almost any kind. Also escape from diseases, predators and other enemies. Some classic examples: Self-incompatibility alleles in plants Sex ratios and mating strategies Major histocompatibility (MHC) alleles in all vertebrates Nicotiana Petunia Nicotiana Positive frequency dependence is not so common. Would it tend to maintain genetic polymorphism? Or eliminate it? Solanum Trans-specific polymorphism of selfincompatibility alleles in members of the family Solanaceae. Some S-alleles in tobacco (Nicotiana) are more closely related to S-alleles in Petunia than to some other S-alleles in their own species!

How and when do typical genes contribute to fitness? A major puzzle: Most genes appear to be unnecessary! Half or more can be knocked out (fully disabled) in yeast, worms, flies and even mice, without any obvious phenotypic effects (in the lab, anyway). But these genes are maintained in evolution, so they must be useful. How? Two hypotheses: (1) Most are special-purpose genes needed only under certain circumstances (stresses that occur in nature but not in the lab). (2) Most are fine-tuning genes that increase the efficiency or accuracy of some physiological or developmental process in most environments. Experimental test devised by Joe Dickinson: Compete no-phenotype knockouts against genotypes that are identical except for the knockout, and let natural selection measure their relative fitnesses. Dickinson talked Janet Shaw (a yeast cell biologist) and John Thatcher (an undergraduate) into helping him try to do this with yeast.

How to ask cells if they miss a (random) gene Mark either the random, no-phenotype knockout, or the wild-type parent, with lacz so that you can score their relative numbers on indicator plates. Start populations with equal numbers of wild-type and knockout cells; grow them for many generations in complete (rich) liquid media. Sample the populations every 10-20 generations and score the relative numbers of marked and unmarked cells.

Plot the frequency of the knockout as a function of generations (A, C) Also plot the log of the ratio of the allele frequencies [ln(q/p)] versus generation (B, D). The slope of this (straight) line is an estimate of the selection coefficient (-s). Gene TD64 Gene TD63 s = 0.045 s = 0.004

Summary of results for 27 no-phenotype knockouts Nineteen mutations (70%) showed statistically significant fitness defects ranging from 0.3% (s = 0.003) to 23% (s = 0.23). Among these, the typical (median) selection coefficient was 1-2%. Six mutations (22%) were not statistically distinguishable from neutral. (Five of the six appeared to be weakly deleterious, and one appeared to be beneficial.) A more sensitive experimental design (with larger populations and allele-frequency assays) would probably show most of these to be significant, raising the fraction of deleterious no-phenotype knockouts to 85-90%. Two of the 27 knockouts (7%) were significantly advantageous, with negative coefficients of s = -0.005 and s = -0.007.

Conclusion: Most genes make modest contributions to fitness This finding (in bacteria, too) supports the fine-tuning hypothesis. Such small effects could not be detected except by natural selection. Read the paper: Thatcher, Shaw & Dickinson, PNAS 95, 253-257 (1998).

What other (non-selective) population process might explain this trend?

Adh F beats Adh S on laboratory fly food soaked in EtOH Homework problem: Let FF homozygotes have a fitness of 1.0 (W FF =1), and assume F/S heterozygotes have intermediate fitness (h = ½). Very roughly, what is the fitness of the SS homozygotes, in the ethanol-soaked environment?