Femtosecond Laser Micromachining

Similar documents
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Laser Based Micro and Nanoscale Manufacturing and Materials Processing

High power picosecond lasers enable higher efficiency solar cells.

Femtosecond laser-induced silicon surface morphology in water confinement

Fiber Optics: Fiber Basics

Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

Advanced Laser Microfabrication in High Volume Manufacturing

Self-Guided Intense Laser Pulse Propagation in Air

Near-field scanning optical microscopy (SNOM)

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Pulsed laser deposition of organic materials

It has long been a goal to achieve higher spatial resolution in optical imaging and

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, , 1 April 1998)

Diffraction of a Circular Aperture

1. INTRODUCTION ABSTRACT

Development of MEMS micromirrors for intracavity laser control

CREOL, College of Optics & Photonics, University of Central Florida

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money

Single Mode Fiber Lasers

EFFICIENT USE OF SHORT PULSE WIDTH LASER FOR MAXIMUM MATERIAL REMOVAL RATE Paper# M602

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...

Measuring Laser Power and Energy Output

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

Longwave IR focal-plane binary optics

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Excimer Laser Technology

Why Using Laser for Dust Removal from Tokamaks

Raman Spectroscopy Basics

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

A Guide to Acousto-Optic Modulators

ADVANCES IN LASER SINGULATION OF SILICON Paper #770

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen

- thus, the total number of atoms per second that absorb a photon is

Laser hole drilling and texturing (for joining) of composites

Laser-induced surface phonons and their excitation of nanostructures

Coating Technology: Evaporation Vs Sputtering

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

RAY TRACING UNIFIED FIELD TRACING

Vacuum Evaporation Recap

A More Efficient Way to De-shelve 137 Ba +

Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium

Pump-probe experiments with ultra-short temporal resolution

BIOMEDICAL ULTRASOUND

METHODS FOR PULSED LASER DEPOSITION OF LARGE-AREA FILMS USING MORE THAN ONE TARGET

Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing

F L E X F L E X. Each year worldwide flex circuit demand increases, due primarily LA S E R PRO C E S S I N G O F. Polyimide requires special methods,

Lecture 4 Scanning Probe Microscopy (SPM)

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

INFRARED MONITORING OF 110 GHz GYROTRON WINDOWS AT DIII D

Acousto-optic modulator

Laser Processing of Polyimide on Copper. Gustina Bernette Collins. Thesis submitted to the Faculty of the

Blackbody radiation derivation of Planck s radiation low

Solid State Detectors = Semi-Conductor based Detectors

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB

View of ΣIGMA TM (Ref. 1)

Broadband THz Generation from Photoconductive Antenna

3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY

How To Understand Light And Color

FAST and CURIOUS A brief introduction to ultrafast lasers and their applications

Acoustic GHz-Microscopy: Potential, Challenges and Applications

High Power Fiber Laser Technology

Defect studies of optical materials using near-field scanning optical microscopy and spectroscopy

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

Millijoules high master-slave pulse ratio 532 nm picosecond laser

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.

Nano Meter Stepping Drive of Surface Acoustic Wave Motor

Optical Microscopy Beyond the Diffraction Limit: Imaging Guided and Propagating Fields

Synthetic Sensing: Proximity / Distance Sensors

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Module 13 : Measurements on Fiber Optic Systems

Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

DIODE PUMPED CRYSTALASER

NANOFLAM. Projet ANR Blanc 2011 BS Aide allouée: , durée 36+8 mois (fin : Mai 2015) Laboratoire H. Curien

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

Raman spectroscopy Lecture

One example: Michelson interferometer

High Brightness Fiber Coupled Pump Laser Development

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Diode-pumped Nd:YAG laser

Limiting factors in fiber optic transmissions

Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm

Femto-LASIK. Pulsewidth: Ultrashort-pulse micro- machining can make sub- wavelength holes. micromachining

Laser beam sintering of coatings and structures

Finite Difference Time Domain and BPM: Flexible Algorithm Selection Technology

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability

Transcription:

Femtosecond Laser Micromachining 02/03/2010 Spring 2010 MSE503 Seminar Deepak Rajput Center for Laser Applications University of Tennessee Space Institute Tullahoma, Tennessee 37388-9700 Email: drajput@utsi.edu Web: http://drajput.com 1of xx

Outline Introduction Laser micromachining Femtosecond laser micromachining (FLM) UTSI research Summary 2of xx 2

Introduction Laser: Theodore Maiman (1960) Laser micromachining: cutting, drilling, welding, or other modification in order to achieve small features. Laser micromachining of materials: Automotive and machine tools Aerospace Microelectronics Biological devices 3of xx 3

Introduction Laser micromachining: Direct writing Mask projection Interference Direct writing: desired pattern fabricated by translating either the sample or the substrate. Mask projection: A given feature on a mask is illuminated, which is projected on the substrate. Interference: Split the primary beam into two beams, which are superimposed in order to create a pattern. The interference pattern is projected on the substrate and the micromachined pattern corresponds with the intensity profile of the pattern. 4 4of xx

Direct Writing Reference: Journal of Materials Processing Technology, Volume 127, Issue 2, Pages 206-210 5of xx 5

Mask Projection Reference: Dahotre and Harimkar, Laser Fabrication and Machining of Materials (New York: Springer 2008) 6of xx 6

7of xx Interference Reference: Dahotre and Harimkar, Laser Fabrication and Machining of Materials (New York: Springer 2008) ( ) 2 / 2sin 1 2 cos 2 ) ( θ λ π = + = l l x I x I o Intensity distribution: 0 to 4I o

Combined Techniques Scanning Near-field Optical Microscopy (SNOM) + Atomic Force Microscopy (AFM) = ablation + etching The setup involves the coupling of the laser light into the tip of solid or hollow fiber. Laser Induced Nano Patterning = interference subpatterns generated by microspheres. A regular two-dimensional array of microspheres acts as an array of microlenses. 8of xx 8

Combined Techniques SNOM arrangement for nanopatterning Reference: Dahotre and Harimkar, Laser Fabrication and Machining of Materials (New York: Springer 2008) 9of xx 9

Combined Techniques Laser-induced surface patterning by means of microspheres Reference: Appl. Phys. A. 76, 1-3 (2003) 10 10 of xx

Laser Micromachining Laser beam: Continuous wave mode (CW) Pulsed mode CW: output constant with time Pulsed: output is concentrated in small pulses Laser micromachining requirement: minimize the heat transport to the region immediately adjacent to the micromachined region. Laser micromachining is often carried out by using pulsed laser, which delivers high energy at short time scales and minimizes heat flow to surrounding material. 11 11 of xx

Laser Micromachining Types of lasers used: Infrared to Ultraviolet Excimer lasers: 157, 193, 248, 308, or 351 nm wavelength depending on the composition of the gas in the cavity. Most materials absorb UV wavelengths. Hence, they provide both low machining rates and high machining precision. Diode-pumped solid state (DPSS) lasers Nd:YAG DPSS: 355 nm (3 rd harmonic) and 266 nm (4 th harmonic) Ti:sapphire solid state lasers (700 nm 1100 nm) CO 2 gas lasers (10,600 nm): limited roles (low operating costs and high throughput) because of spot size limitation (50-75 micrometers). 12 12 of xx

Laser Micromachining Laser-material interaction leading to ablation. Material removal occurs when the absorbed energy is more than the binding energy of the substrate material. Energy transfer mechanism depends on material properties and laser properties. Absorption: Thermal or/and Photochemical processes 13 13 of xx

Absorption Mechanism Thermal Ablation Commonly observed with long wavelength and continuous wave (CW) lasers e.g., CO 2 lasers. Absorption of laser energy causes rapid heating, which results in melting and/or vaporization of the material. May be associated with a large heat-affected zone. Photochemical Ablation Commonly observed with short wavelength and pulsed lasers. Occurs when the laser photon energy is greater than the bond energy of the substrate material. Vaporization occurs due to bond-dissociation due to photon absorption. Thermal effects do not play a significant role. 14 14 of xx

Factors Affecting Laser Ablation Laser ablation demonstrates threshold behavior in that ablation takes above certain fluence level. The threshold is a function of laser properties and substrate material properties. Laser properties: laser fluence, wavelength, peak power. Material properties: optical (absorption) and thermal (diffusivity) properties. Pulse duration affects the heat-affected zone. 15 15 of xx

Femtosecond Laser Machining (FLM) Exhibit extremely large peak power values. Laser material interaction in femtosecond lasers is fundamentally different than that in long wavelength lasers. Induces nonlinear effects (e.g., multiphoton absorption). MPA: The simultaneous absorption of two or more photons can provide sufficient energy to cleave strong bonds. As a result, relatively long wavelength lasers with femtosecond pulse widths can be used to machine materials that are otherwise difficult to machine. 16 16 of xx

Femtosecond Laser Micromachining First demonstrated in 1994 by Du et al followed by Pronko et al in 1995 to ablate micrometer sized features. The resolution since then has improved to machine nanometer sized features. Advantages of femtosecond laser micromachining (FLM): The nonlinear absorption induces changes to the focal volume. The absorption process is independent of the material. Fabrication of an optical motherboard by bonding several photonic devices to a single transparent substrate. 17 17 of xx

FLM: Physical Mechanisms Results from laser-induced optical breakdown. Laser-induced optical breakdown: Transfer of optical energy to the material by ionizing a large number of electrons that, in turn, transfer energy to the lattice. As a result of the irradiation, the material can undergo a phase or structural modification, leaving behind a localized permanent change in the refractive index or even a void. Absorption: the absorption of light in a transparent material must be nonlinear because there are no allowed electronic transitions at the energy of the incident photon. 18 18 of xx

FLM: Physical Mechanisms For such nonlinear absorption to occur, the electric-field strength in the laser pulse must be approximately equal to the electric field that binds the valence electrons in the atoms of the order of 10 9 V/m, corresponding to a laser intensity of 5 x 10 20 W/m 2. To achieve such electric-field strengths with a laser pulse, high intensities and tight focusing are required. Example: a 1-microJoule, 100 femtosecond pulse focused to a spot size of 16 micrometers. 19 19 of xx

FLM: Physical Mechanisms Laser-induced optical breakdown 20 20 of xx MSE503 Materials Science Seminar Spring 2010

FLM: Physical Mechanisms The laser pulse transfers energy to the electrons through nonlinear ionization. For pulse durations greater than 10 femtoseconds, the nonlinearly excited electrons are further excited through phonon-mediated linear absorption. When they acquire enough kinetic energy, they can excite other bound electrons Avalanche ionization. When the density of excited electrons reaches about 10 29 /m 3, the electrons behave as a plasma with a natural frequency that is resonant with the laser leading to reflection and absorption of the remaining pulse energy. 21 21 of xx

FLM: Physical Mechanisms Sub-picosecond: absorption, ionization, and scattering events Nanosecond: pressure or shock wave propagation Microsecond: thermal energy propagation Reference: Gattass RR and Mazur E, Nature Photonics, Vol 2, 219 225, 2008 22 22 of xx

FLM: Physical Mechanisms For pulses of subpicosecond duration, the timescale over which the electrons are excited is smaller than the electron-phonon scattering time (about 1 picosecond). Thus, a femtosecond laser pulse ends before the electrons thermally excite any ions. Reduces heat affected region Increases the precision of the method. FLM: deterministic process because no defect electrons are needed to seed the absorption process. The confinement and repeatability of the nonlinear excitation make it possible for practical purposes. 23 23 of xx

Bulk Damage If the absorption is purely nonlinear, the laser intensity required to induce a permanent change will depend nonlinearly on the bandgap of the substrate material. Because the bandgap energy varies from material to material, the nonlinear absorption would vary a lot. However, the threshold intensity required to damage a material is found to vary only very slightly with the bandgap energy, indicating the importance of avalanche ionization, which depends linearly on I. Because of this low dependence on the bandgap energy, femtosecond laser micromachining can be used in a broad range of materials. 24 24 of xx

Applications Waveguides Active devices Filters and resonators Polymerization Nanosurgery Material processing Microfluidic devices Rapid prototyping 25 25 of xx

FLM at the UT Space Institute Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO 2 Volume 16, No. 19, Optics Express, PP 14411 White Y., Li X., Sikorski Z., Davis L.M., Hofmeister W. 26 26 of xx

FLM at the UT Space Institute Experimental Set-up Ti-sapphire laser: Center wavelength: 800 nm Repetition rate: 250 khz Pulse width: 200 femtosecond (FWHM) Average power of 1 W. Objective lens (dry): Numerical Aperture: 0.85 Working distance: 0.41-0.45 mm Correction collar to adjust for spherical aberration Fused silica (200 micrometers) of refractive index 1.453 at 800 nm Piezoelectric nanostage with 200 micrometers range of motion 27 27 of xx

Single Pulse Nano-holes 1.2 μj 1.6 μj 2.4 μj 1.2 μj Nano-holes machined by single laser pulses at different energies 28 28 of xx

Single Pulse Nano-holes Dependence of nano-hole diameter at the surface on the pulse energy 29 29 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes Depth analysis Conventional technique: Atomic Force Microscopy Problems in obtain signal from the bottom of a nanometer sized, high-aspect ratio feature. Techniques used: Replication method DualBeam TM SEM/FIB (CNMS, ORNL) Replication method: fast, non-destructive, and inexpensive. Used a cellulose-based acetate films (35 micrometer). 30 30 of xx

Single Pulse Nano-holes Replication method Nano-holes machined with laser pulse energy of 1.6 μj 31 31 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes Replication method Nano-holes machined with laser pulse energy of 2 μj 32 32 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes Dependence of hole depth (by replication) on the pulse energy 33 33 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes Dependence of aspect ratio (by replication) on the pulse energy 34 34 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes DualBeam TM SEM/FIB Schematics of the DualBeam TM SEM/FIB tool 35 35 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes DualBeam TM SEM/FIB Scope image inside the chamber of the tool 36 36 of xx MSE503 Materials Science Seminar Spring 2010

Single Pulse Nano-holes DualBeam TM SEM/FIB SEM image of the sectioned nano-holes in the trench at zero degree 37 37 of xx

Single Pulse Nano-holes DualBeam TM SEM/FIB View of the trench after 90 o rotation and 25 o tilt AB = AC/tan52 o = 0.78 AC 38 38 of xx

Single Pulse Nano-holes Nano-hole #1 #2 #3 #4 AC (μm) 0.7 5 10.7 15 AB (μm) 0.6 3.9 8.3 11.7 The FIB sectioning confirmed that the replication technique does not overestimate the depth of the holes. In fact, the replication technique most probably underestimates the depths. It might be due to the difficulty of the polymer to reach the bottom of the nano-hole and/or distortion of the acetate nanowires during gold coating. 39 39 of xx

Single Pulse Nano-holes DualBeam TM SEM/FIB SEM image at 52-degree tilt of FIB cross-sectioned nano-hole 40 40 of xx

Summary Femtosecond lasers enable direct writing of nanoscale features. FLM can be used to fabricate fluidic and photonic components Focusing the femtosecond laser pulse with a high numerical aperture with spherical aberration is the key to produce high aspect ratio features. Self-focusing due to Kerr nonlinearity is also expected. The fabrication of high aspect ratio nano-holes demonstrated. 41 41 of xx

Thanks! 42 of xx MSE503 Materials Science Seminar Spring 2010