(D,{g i j },{R i j }),

Similar documents
Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i.

liberalizmi da sakutreba

socialuri kapitalis roli soflis ganvitarebasi

PhD Concept Paper. winasityvaoba

ROLE OF SOCIAL NETWORKS IN GEORGIAN PARTY POLITICS

revolucia martvasi qartuli TviTmmarTvelobisTvis


PhD Concept Paper. Preface

civilizaciuri Ziebani CIVILIZATION RESEARCHES

How To Build A City On A River

kompiuteruli - kitxva, savarjiso daimaxsovre,? simrera,? TamaSi.

gamocdebis erovnuli centris ucxouri enebis jgufig rogor movemzadot erovnuli gamocdebisatvis inglisuri ena saswavlo weli

Capital markets in developing countries

Tavmjdomaris sveti Chairman s column

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Chapter 17. Review. 1. Vector Fields (Section 17.1)

saqartvelos statistikis erovnuli samsaxuri NATIONAL STATISTICS OFFICE OF GEORGIA saqartvelos statistikuri weliwdeuli STATISTICAL YEARBOOK OF GEORGIA

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

MONTANA STATE HOSPITAL POLICY AND PROCEDURE WORKER S COMPENSATION

SCO TT G LEA SO N D EM O Z G EB R E-

EM EA. D is trib u te d D e n ia l O f S e rv ic e

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

San$Diego$Imperial$Counties$Region$of$Narcotics$Anonymous$ Western$Service$Learning$Days$$ XXX$Host$Committee!Guidelines$ $$


CHAPTER 5 Energy Efficient HVAC Design

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

TABLE OF CONTENTS{PRIVATE } PAGE

PG DIPLOMA IN GLOBAL STRATEGIC MANAGEMENT LIST OF BOOKS*

CRM Fundamentals. Apress" Scott Kostojohn. Mathew Johnson. Brian Paulen

Strategic Technology Plan

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

THREE DIMENSIONAL GEOMETRY

Evobike 2014 Árak szerzõdött partnereink számára Mounty


Facility Online Manager

wliuri angarisi ANNUAL REPORT

Software Monthly Maintenance (Non Accounting Use) Quick Reference Guide


Cikkszám Termék neve Fogyasztói bruttó árak

Subsidiary papers Compulsory Language Subject. Education paper B. A.(Honours) Part I

Isle of Man Law Society (the Society ) Professional Indemnity Premium Payment Rules (the Rules )

b) Discussion of Bid c) Voting (1) Results: Coastal Carolina wins B. State Communications Coordinator of the Year 1. Winthrop University

1 of 7 31/10/ :34

2014 Legislation Regarding A-F School Grading Formula. September 17, 2014

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 251 CALCULUS III

5 means to write it as a product something times something instead of a sum something plus something plus something.

ISO 9001:2008 INSTITUTE OF TAX ADMINISTRATION (ITA) APPLICATION FORM

aleqsandre kvitasvili (ivane javaxisvilis saxelobis Tbilisis saxelmwifo universitetis reqtori)

Consolidated Annual Report of the AB Capital Group for the financial year 2008/2009. covering the period from July 1, 2008 to June 30, 2009

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Pre-Session Review. Part 2: Mathematics of Finance

Workflow Administration of Windchill 10.2

Higher Education Loan Authority of the State of Missouri. Student Loan Asset-Backed Notes, Series

How to Enable the Audit of Active Directory Objects in Windows 2008 R2 Lepide Software

B1 Project Management 100

Matrix-Chain Multiplication

GroupWise 2012 What s New

Climate and Disaster Resilience Index of Asian Cities

GFSU Certified Cyber Crime Investigator GFSU-CCCI. Training Partner. Important dates for all batches


MENSURATION. Definition

OPENTRACK: Simulation of complex nodes

Roman Numerals. Symbol Decimal Value I One (1) V Five (5) X Ten (10) L Fifty (50) C Hundred (100) D Five Hundred (500) M Thousand (1000)

VILLAGE OF ARLINGTON HEIGHTS

EMPLOYEE PERFORMANCE REVIEW FORM


TABLE OF CONTENTS CHAPTER TITLE PAGE

PERFECT SQUARES AND FACTORING EXAMPLES

FINAL JOINT PRETRIAL ORDER. This matter is before the Court on a Final Pretrial Conference pursuant to R. 4:25-1.

Green Climate Fund Online Accreditation System: User s Guide

fun

CORPORATE GOVERNANCE SUMMARY OF BEST PRACTICE GUIDELINES

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

Policy Title: Information and Communication Technologies (ICT) Service Management Policy. Policy Number: P60122

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

Quotient Rings and Field Extensions

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

CHAPTER 6 CERTIFICATION REQUIREMENTS

Regulatory Story. RNS Number : 8343I. DCD Media PLC. 08 July TR-1: NOTIFICATION OF MAJOR INTEREST IN SHARES i

SBMF 2015 ANAIS PROCEEDINGS. 18 th BRAZILIAN,SYMPOSIUM,ON,FORMAL,METHODS September,21>22,,2015 Belo,Horizonte,,MG,,Brazil,

Come stà. Domenico Maria Ferrabosco (Bologna ) Cantus. - ta, _e vo - lon - tie - ri M'al -le-gro _e can -to _en. Io mi son gio vi.

TechAdvisor & Account Coordinator Salesforce.com Training

n(n + 1) n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3

4.2. LINE INTEGRALS ; z = t. ; y = sin

C relative to O being abc,, respectively, then b a c.

saqartvelos sajaro moxeleta profesiuli SesaZleblobebis zrda gadawyvetilebis mirebasa da molaparakebebis warmartvis teqnikasi

OVERVIEW OF RESEARCH PROJECTS IN THE ICT DOMAIN ICT statistical report for annual monitoring (StReAM)

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Fractions to decimals

CS 141: Introduction to (Java) Programming: Exam 1 Jenny Orr Willamette University Fall 2013

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")

The GN is committed to providing programs, which facilitate local government, to promote greater local autonomy and accountability.

Final report SA-R of the AB S.A. company for the financial year 2009/2010. covering the period from to

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

PANTONE DS-C PANTONE C:0 M:5 Y:100 K:10 DS 2-1 C PANTONE C:0 M:3 Y:100 K:10 DS 2-2 C PANTONE C:0 M:0 Y:100 K:10 DS 2-3 C

ARTICLE 3. BEHAVIORAL HEALTH INPATIENT FACILITIES

REGULATIONS IN TERMS OF THE NATIONAL PROSECUTING AUTHORITY ACT, 1998 (ACT 32 OF 1998)

Transcription:

leqcia III-IV. interpretacia. Sesrulebadoba da WeSmaritoba. modelebi. formulebs gaacnia azri mxolod masin, roca matsi Semaval simboloebs gaacnia interpretacia. rogorc vicit, simboloebi warmoadgenen Teoriis enis nawils. Teoriis ena arvnisnot L-iT. interpretaciis qves Cven gvesmis funqcia :L D, romelic asaxavs enas algebrul sistemasi (D,{g i j },{R i j }), sadac (a i ) D, (f i j )=g i j, (P i j )=R i j, da g i j :D j D da R i j D j aris Sesabamisad j adgiliani operacia da mimarteba D-Si. D-s ewodeba interpretaciis are. mocemul interpretaciasi cvladebi moisazreba rogorc cvladebi D ze, xolo kavsirebs, da kvantorebs eniweba mati Cveulebrivi azri. mocemuli interpretaciisatvis nebismieri formula Tavisufali cvladebis garese (an sxvanairad, Caketili formula) warmoadgens gamonatqvams, romelic WeSmaritia an mcdaria, xolo nebismieri formula Tavisufali cvladebit gamoxatavs romelirac mimartebas interpretaciis aresi; es mimarteba SeiZleba iyos Sesrulebadi (WeSmariti) cvladebis romelirac mnisvnelobebisatvis interpretaciis aredan da ar iyos Sesrulebadi (mcdari) sxva mnisvnelobebisatvis. m a g a l i T e b i: (i) P 2 (x, x 2 ) ; (ii) x 2 P 2 (x, x 2 ) ; (iii) x 2 x P 2 (x 2, x ). Tu Cven virebt interpretaciis ared dadebit mtel ricxvta simravles da P 2 (y,z)-is interpretacia aris y z, masin (i) warmoadgens mimartebas y z, romelic Sesrulebadia yvela iset dadebit mtel ricxvta (a,b) dalagebul wyvilebistvis, sadac a naklebia an tolia b-ze; (ii) warmoadgens Tvisebas (e. i. unarul (ertadgilian) mimartebas) yoveli dadebiti mteli y ricxvistvis, y z, romelic sruldeba mxolod ricxvistvis ; dabolos, (iii) aris WeSmariti gamonatqvami, romelic amtkicebs umciresi dadebiti mteli ricxvis arsebobas. Cven rom interpretaciis ared agvero yvela mteli ricxvebis simravle, masin (iii)aarmocndeboda mcdari. Sesrulebadobis da WeSmaritobis cneba intuiciurad gasagebia, magram moviyvanot ufro zusti formulireba. davusvat, gvaqvs romelime interpretacia Tavisi interpretaciis areti D da iyos yvela Tvlad mimdevrobata simravle, romlis elementebi ekutvnis D-s. ganvsazrvrot, ras nisnavs, rom formula Sesrulebadia s = (b, b 2,. ) mimdevrobaze - dan mocemuli interpretaciisatvis. winaswar Cven ganvsazrvravt ertadgilian funqcias s*, romlis domeinia yvela termta simravle, xolo kodomeini aris D, e. i. s*: T D. () Tu termi t aris sagnobrivi cvladi x i, masin s*(t) = b i.

(2) Tu termi t aris sagnobrivi konstanta a i, masin s*( a i ) emtxveva mis interpretacias (a i ) D. (3) Tu f n i funqcionaluri asoa, romlis interpretacia ( f n n i ) = g i aris n adgiliani operacia D ze da t,, t n termebia, masin s*(f n i (t,, t n )) = g n i (s*(t ),, s*(t n )). amrigad s* aris funqcia, romelic ganisazrvreba s mimdevrobit da asaxavs termta simravles D-Si. Tu vilaparakebt araformalurad, masin nebismieri s = (b, b 2,. ) mimdevrobistvis da nebismieri t termistvis s*(t) aris D simravlis elementi, romelic miireba x i cvladis Canacvlebis Sedegad b i elementit yoveli i Tvis term t-si da Semdeg interpretaciis yvela operaciis SesrulebiT, romlebic Seesabamebian term t-si Semaval funqcionalur asoebs. magalitad, Tu t aris f 2 2 (x 3,f 2 (x, a )), interpretaciis 2 are aris mtel ricxvta simravle, f 2 da f 2 interpretirdeba Sesabamisad rogorc Cveulebrivi gamravleba da jami, xolo a rogorc 2; masin nebismieri s=(b,b 2,.) mimdevrobistvis s*(t) warmoadgens mtel ricxvs b 3 (b + 2). axla Cven SevudgeT ZiriTad gansazrvrebas, romelsac ganvmartavt formulis induqciur gansazrvraze dayrdnobit. (i) Tu aris elementaruli formula P n n j (t,, t n ) da R j aris misi Sesabamisi mimarteba (P n j ) mocemul interpretaciasi, masin formula Sesrulebulia s mimdevrobaze masin da mxolod masin, roca R n j (s*(t ),,s*(t n )), e. i. n elementiani mimdevroba n (s*(t ),,s*(t n )) ekutvnis mimarteba R j, e. i. (s*(t ),,s*(t n )) R n j. (ii) formula Sesrulebulia s-ze masin da mxolod masin, roca formula ar aris Sesrulebuli s-ze. (iii) formula Sesrulebulia s-ze masin da mxolod masin, roca formula ar aris Sesrulebuli mimdevroba s-ze an roca formula Sesrulebulia s-ze. (iv) formula x i Sesrulebulia s-ze masin da mxolod masin, roca formula Sesrulebulia nebismier mimdevrobaze -dan, romelic gansxvavebulia s-gan araumetes Tavisi i-uri komponentit. sxvagvarad rom vtqvat, formula Sesrulebadia s=(b,b 2,.) mimdevrobaze masin da mxolod masin, roca formulis Tavisufali x i cvladis nebismieri b D simboloti Canacvleba gvazlevs WeSmarit winadadebas mocemul interpretaciasi. formula -s ewodeba WeSmariti (mocemul interpretaciasi) masin da mxolod masin, roca is sruldeba nebismier mimdevrobaze dan. formula -s ewodeba mcdari (mocemul interpretaciasi), Tu is ar sruldeba arcert mimdevrobaze dan. mocemul interpretacias ewodeba modeli formulata mocemuli simravlisatvis, Tu yoveli formula -dan WeSmaritia mocemul interpretaciasi. 2

SeamowmeT Semdegi debulebebi, romlebic gamomdinareoben gansazrvrebidan. (I) mcdaria mocemul interpretaciasi masin da mxolod masin, roca WeSmaritia igive interpretaciasi, da WeSmaritia masin da mxolod masin, roca mcdaria. (II) arcerti formula ar SeiZleba iyos ertdroulad WeSmariti da mcdari ertdaigive interpretaciasi. (III) Tu mocemul interpretaciasi WeSmaritia da, masin WeSmaritia. (IV) mcdaria mocemul interpretaciasi masin da mxolod masin, roca WeSmaritia amave interpretaciasi, xolo mcdaria. (V) (i) Sesrulebulia s-ze masin da mxolod masin, roca formula Sesrulebulia s ze da Sesrulebulia s ze. Sesrulebulia s-ze masin da mxolod masin, roca formula Sesrulebulia s ze an Sesrulebulia s ze. Sesrulebulia s-ze masin da mxolod masin, roca an formula Sesrulebulia s ze da Sesrulebulia s ze, an ar aris Sesrulebuli s ze da ar aris Sesrulebulia s ze. (ii) x i Sesrulebulia s ze masin da mxolod masin, roca Sesrulebulia ert mainc s mimdevrobaze, romelic gansxvavdeba s gan araumetes mxolod i uri komponentit. (VI) WeSmaritia mocmul interpretaciasi masin da mxolod masin, roca amave interpretaciasi WeSmaritia x i. mocemuli formulis Caketva ewodeba formulas, romelic miireba zogadobis kvantorebis minawerit -s win, romlebic Seicaven indeqsebis klebadobis mixedvit -s yvela Tavisufal cvladebs. formulis Caketvas, romelic ar Seicavs Tavisufal cvladebs, vuwodebt TviT am formula -s. (magalitad, Tu aris P 2 (x 2, x 5 ) x 2 P 3 (x, x 2, x 3 ), masin -s Caketva iqneba x 5 x 3 x 2 x.) (VII) tavtologiis yoveli kerzo SemTxveva WeSmaritia nebismier interpretaciasi. (mocemuli propoziciuli formis kerzo SemTxvevas Cven vuwodebt nebismier formulas, romelic miireba am formulasi propoziciuli asoebis nacvlad I rigis Teoriis (predikatta arricxvis) formulebis CanacvlebiT im pirobit, rom ertdaigive propoziciuli asoebis Semavlobis adgilas ertdaigive formula Cainacvleba.) (VIII) davusvat, rom formula -s yvela Tavisufali cvladi imyofeba x,..., cvladebs Soris. masin Tu s da s i x in mimdevrobebis komponentebi i,,i n nomrit emtxveva ertmanets, masin formula Sesrulebulia s-ze masin da mxolod masin, roca is Sesrulebulia s -ze. (m i T i T e b a. induqcia kavsirebis da kvantorebis raodenobis mixedvit formula 3

Si. jer damtkicdes, rom Tu term t-s cvladebi imyofeba x,..., Soris, xolo s da s mimdevrobebis wevrebi i,, i n i x in nomrit emtxveva ertmanets, masin s*(t) = (s )*(t). kerzod, Tu t ar Seicavs cvladebs, masin s *(t) = s 2 *(t) nebismieri s da s 2 mimdevrobebisatvis. yvela iseti n-elementiani b,..., ) mimdevrobebis ( i b ik simravles, sadac misi elementebi ekutvnis interpretaciis ares D, rom formula Sesrulebulia yovel mimdevroba s ze, romlis i,, i n komponentebi emtxveva Sesabamisad b,...,, i b in ewodeba interpretaciis mimarteba (an Tviseba), romelic Seesabameba formula s. davusvat, magalitad, rom D aris yvela adamianta simravle, P 2 (x,y) da P 2 2 (x,y) interpretaciebi Sesabamisad arian x aris y-is Zma da x aris y-is msobeli ; masin binaruli mimarteba D_Si, romelic Seesabameba formulas x 3 (P 2 (x,x 3 ) & P 2 2 (x 3,x 2 )), warmoadgens mimartebas natesaur kavsirs, romelic akavsirebs ZmisSvils da bizas. Tu interpretaciis ared avirebt mtel dadebit ricxvta simravles, xolo P 2, f 2 da a interpretirebulia Sesabamisad rogorc =, gamravleba da, masin formulas P 2 (x, a ) & x 2 ( x 3 P 2 (x,f 2 (x 2, x 3 )) P 2 (x 2, x ) P 2 (x 2, a )) (IX) (X) Seesabameba mocemuli azrit ricxvis Tviseba iyos martivi. Tu formula Caketilia, masin nebismier interpretaciasi WeSmaritia an, an (e. i. mcdaria). aracaketili, e. i. romelic Seicavs Tavisufal cvladebs, formula SeiZleba zogiert interpretaciasi arc WeSmariti da arc mcdari. davusvat, magalitad, aris P 2 (x,x 2 ). ganvixilot interpretacia, romlis are aris mtel ricxvta simravle da sadac P 2 (x,x 2 ) interpretacia aris x < y. am interpretaciasi Sesrulebadia mxolod mimdevroba s = (b, b 2, ) ze, romelic akmayofilebs pirobas b < b 2. masasadame, am interpretciasi ganxiluli formula arc WeSmariti da arc mcdari. lema. davusvat, rom t da v termebia, s mimdevroba -dan, t miireba t-dan yvela x i Semavlobebis CanacvlebiT v termit da s miireba s-dan massi i-uri komponentis SecvliT s*(v) Ti; masin s*(t ) = (s )*(t). damtkiceba. davusvat, rom (x i ) formulaa, t termia, romelic Tavisufalia x i -Tvis (x i )-Si, da (t) formulaa, romelic mirebulia (x i )-is yvela Tavisufali x i cvladis SenacvlebiT t-ti. masin formula (t) Sesrulebadia mimdevroba s = (b, b 2, )-ze masin da mxolod masin, roca is Sesrulebadia s, romelic mirebulia s-dan element b i -is SecvliT s*(t)-t. 4

Sedegi. Tu mimdevroba s-ze Sesrulebadia formula x i (x i ), masin Sesrulebadia agretve formula (t). masasadame, formula x i (x i ) (t) WeSmaritia nebismier interpretaciasi. (XI) Tu formula ar Seicavs x i rogorc Tavisufal cvlads, masin formula x i ( ) ( x i ) WeSmaritia nebismier interpretaciasi. savarjiso daamtkicet (I) (XI). magalitis saxit Cven davamtkicot (XI). dausvat, rom (XI) arasworia. es nisnavs, rom romelirac da formulebistvis formula x i ( ) ( x i ) ar aris WeSmariti romelirac interpretaciasi. gansazrvris me -(iii) punqtis Tanaxmad unda arsebobdes mimdevroba s, romelzedac x i ( ) Sesrulebadia, xolo ( x i ) ar aris Sesrulebadi. masin, isev imave me -(iii) punqtis Tanaxmad am mimdevroba s-ze Sesrulebadia da ar aris Sesrulebadi x i.. e. i., igive gansazrvrebis me- (iv) punqtis Tnaxmad, arsebobs mimdevroba s, romelic SeiZleba gansxvavdebodes s gan mxolod erti i-uri komponentit, romelzedac ar aris Sesrulebadi. vinaidan x i ar aris Tvisufali arc x i ( ) Si da arc -Si, xolo TviT es formulebi Sesrulebadia s-ze, masin, Tanaxmad (VIII), iseni Sesrulebadia agretve s -ze, (iv) Tanaxmad gamomdinareobs, rom agretve Sesrulebadia s -ze. amgvarad, da Sesrulebadia s -ze, saidanac, punqti (iii) mixedvit, gamomdinareobs, rom -c Sesrulebadia s -ze. miviret winaamrdegoba, rom ar aris Sesrulebadi s -ze. amit (XI) damtkicebulia. formula -s ewodeba logikurad zogadmartebuli (predikatta arricxvasi), Tu is WeSmaritia nebismier interpretaciasi. formula -s ewodeba Sesrulebadi (predikatta arricxvasi), Tu arsebobs interpretacia, romelsic Sesrulebadia ertze mainc mimdevrobaze -dan. cxadia, rom formula logikurad zogadmartebulia masin da mxolod masin, roca formula ar aris Sesrulebadi, da Sesrulebadia masin da mxolod masin, roca formula ar aris logikurad zogadmartebuli. rogorc vicit, nebismier interpretaciasi Caketili formula an WeSmaritia an mcdari, e. i. Sesrulebadia an nebismier mimdevrobaze, an arcertze. amgvarad, nebismieri Caketili formula Sesrulebadia masin da mxolod masin, roca is WeSmaritia romelirac interpretaciasi. formula vuwodebt winaamrdegobrivs (predikatta arricxvasi), Tu formula logikurad zogadmartebulia, an, rac igivea, Tu formula mcdaria nebismier interpretaciasi. 5

vityvit, rom formula logikurad gamomdinareobs formula - dan (predikatta arricxvasi), Tu nebismier interpretaciasi formula Sesrulebadia nebismier mimdevrobaze, romelzedac Sesrulebadia formula. (ufro zogadad, formula logikurad gamomdinareobs (predikatta arricxvasi) formulata simravlidan, Tu nebismier interpretaciasi formula Sesrulebadia nebismier mimdevrobaze, romelzedac Sesrulebadia, romelzedac Sesrulebadia yoveli formula -dan.) formulebs vuwodebt logikurad eqvivalenturebs (predikatta arricxvasi), Tu yoveli matgani logikurad gamomdinareobs meoredan. am gansazrvrebebidan usualod gamomdinareobs Semdegi mtkicebebi: (a) formula logikurad gamomdinareobs formula -dan masin da mxolod masin, roca formula logikurad zogadmartebulia. (b) da formulebi logikurad eqvivalenturia masin da mxolod masin, roca formula logikurad zogadmartebulia. (c) Tu formula logikurad gamomdinareobs formula -dan da WeSmaritia mocemul interpretaciasi, masin amave interpretaciasi WeSmaritia. (d) Tu formula logikurad gamomdinareobs formulebis simravlidan, romlebic WeSmaritia mocemul interpretaciasi, masin amave interpretaciasi WeSmaritia. yovel winadadebas romelime formalur an bunebriv enasi ewodeba logikurad WeSmariti (predikatta arricxvasi), Tu is aris romelirac logikurad zogadmartebuli formulis kerzo SemTxveva, da ewodeba logikurad mcdari (predikatta arricxvasi), Tu is aris kerzo SemTxveva romelirac winaamrdegobrivi formulisa. 6