Initial Highlights from the Gould Belt Survey



Similar documents
NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F.

IV. Molecular Clouds. 1. Molecular Cloud Spectra

Resultados Concurso Apex 2014-A

Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds

Observing the Universe

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

Heating & Cooling in Molecular Clouds

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

L3: The formation of the Solar System

Class 2 Solar System Characteristics Formation Exosolar Planets

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris

Modeling Galaxy Formation

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.

Gravitational instabilities in protostellar discs and the formation of planetesimals

Lecture 6: distribution of stars in. elliptical galaxies

A Universe of Galaxies

Star Clusters. Star Clusters E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Detailed Mass Map of CL from Strong Lensing

8.1 Radio Emission from Solar System objects

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

The Interstellar Medium Astronomy 216 Spring 2005

Class #14/15 14/16 October 2008

Activity: Multiwavelength Bingo

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements

Exceptionally massive and bright, the earliest stars changed the course of cosmic history

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

ENERGY TRANSPORT WITHIN A STAR

Lecture 19: Planet Formation I. Clues from the Solar System

Planck Early Results: New light on Anomalous Microwave Emission from Spinning Dust Grains

Astronomy & Physics Resources for Middle & High School Teachers

Summary: Four Major Features of our Solar System

Evolution of Close Binary Systems

Elliptical Galaxies. Houjun Mo. April 19, Basic properties of elliptical galaxies. Formation of elliptical galaxies

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

on Recent Developments on Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

Explain the Big Bang Theory and give two pieces of evidence which support it.

Study Guide: Solar System

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

SLAS Messier Marathon Log Sheets # Messier Constellation Type Rating Instrument Date Time Location 1 M77 Cetus Galaxy Difficult

1. Degenerate Pressure

Populations and Components of the Milky Way

13 Space Photos To Remind You The Universe Is Incredible

8 Radiative Cooling and Heating

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

FXA UNIT G485 Module Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt

UNIT V. Earth and Space. Earth and the Solar System

Transcription:

Initial Highlights from the Gould Belt Survey Philippe André, CEA/SAp Saclay A.Men shchikov, S.Bontemps, V. Könyves, F. Motte, N. Schneider, P. Didelon, V. Minier, P. Saraceno, D.Ward- Thompson, J. Di Francesco, G. White, S. Molinari, L. Testi, A. Abergel, M. Griffin, T. Henning, P. Royer, B. Merin, R. Vavrek, M. Attard, D. Arzoumanian, C.D. Wilson, P. Martin, and the Gould Belt KP Consortium Main groups : SPIRE SAG 3 (eg. J.Kirk, M. Huang, G. Olofsson) CEA Saclay, IFSI Rome & INAF Arcetri PACS PACS PACS Institutes OAMP Marseille (A. Zavagno) KU Leuven (J. Blommaert & C. Waelkens) MPIA Heidelberg (O. Krause, R. Launhardt) + ESA HSC ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

The Herschel Gould Belt Survey http://gouldbelt-herschel.cea.fr/ SPIRE/PACS 70-500 µm imaging of the bulk of nearby (d < 0.5 kpc) molecular clouds (~ 160 deg 2 ), mostly located in Gould s Belt. Gould Belt Cepheus Serpens Ophiuchus Lupus Taurus Perseus Aquila Chamaeleon CrA Orion IRAS 100 µm Motivation: Key issues on the early stages of star formation What determines the distribution of stellar masses = the IMF? What generates prestellar cores and what governs their evolution to protostars and proto-brown dwarfs? Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

First images from the Gould Belt Survey 1) Polaris translucent cloud (d ~ 150 pc) 23 Oct 2009 Red : SPIRE 500 µm Green : SPIRE 250 µm Blue : PACS 160 µm ~ 7 deg 2 field Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010 Ward-Thompson et al. 2010 Miville-Deschênes et al. 2010 A&A special issue

First images from the Gould Belt Survey 2) Aquila Rift star-forming cloud (d ~ 260 pc) 24 Oct 2009 cf. http://oshi.esa.int Red : SPIRE 500 µm Green : SPIRE 160 µm Blue : PACS 70 µm ~ 3.3 deg x 3.3 deg field Könyves et al. 2010 Bontemps et al. 2010 André et al. 2010 A&A special issue

Revealing the structure of one of the nearest infrared dark clouds (Aquila Main: d ~ 260 pc) Herschel (SPIRE+PACS) Dust temperature map (K) Herschel (SPIRE+PACS) Column density map (H 2 /cm 2 ) 40 10 23 30 W40 1 deg ~ 4.5 pc 20 10 22 10 Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010 10 21

Aquila: `Compact Source Extraction (using getsources A. Menshchikov et al. 2010) Herschel (SPIRE+PACS) Aquila entire field: N H2 (cm -2 ) 10 23 Spatial distribution of extracted cores 541 starless 201 YSOs Starless = neither PACS 70 µ nor Spitzer 24 µ emission 10 22 80% of the cores found at N H2 > 7x10 21 cm -2 A v (back) > 7 3 deg ~ 14 pc 70/160/500 µm composite image

Aquila: `Compact Source Extraction (using getsources A. Menshchikov et al. 2010) Herschel (SPIRE+PACS) Aquila entire field: N H2 (cm -2 ) 10 23 Spatial distribution of extracted cores 541 starless 201 YSOs 10 22 Starless = neither PACS 70 µ nor Spitzer 24 µ emission 80% of the cores found at A v (back) > 7 3 deg ~ 14 pc 70/160/500 µm composite image

Aquila/Serpens-South dark filament: A rich protocluster in the making Spitzer/IRAC 8 µm SPIRE 250 µm + PACS 160/70 µ m 10 ~ 0.75 pc Gutermuth et al. 2008: 54 Class I YSOs Bontemps et al. 2010: 8 Class 0 protostars

A group of starless cores in Aquila-East Herschel (SPIRE+PACS) N H2 map (cm -2 ) Radial intensity profiles Ellipses: FWHM sizes of 24 starless cores at 250 µm Stars ( ) : Two candidate Class 0 protostars Könyves et al. 2010, A&A special issue Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010 Background subtracted

Most of the Aquila starless cores are bound Motte et al. (2001) Mass, M (M ) Cirrus noise limit in Aquila Likely prestellar in nature Könyves et al. 2010 Talk by V. Könyves on Thursday Deconvolved FWHM Location size in mass vs. size diagram, consistent with BE spheroids peak High degree of concentration: N H2 /<N H2 > ~ 4 on average Median column density contrast over the background ~ 1.5 Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

Polaris: `Compact Source Extraction (using getsources A. Menshchikov et al. 2010) Herschel (SPIRE+PACS) Column density map (H 2 /cm 2 ) 8.10 21 Spatial distribution of ~ 300 extracted cores (all starless) + galaxies (!) 10 21 1 deg ~ 2.6 pc 160/250/500 µm composite image Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

Most of the Polaris starless cores are unbound Motte et al. (2001) Mass, M (M ) Cirrus noise limit in Polaris not (yet?) prestellar André et al. 2010 Ward-Thompson et al. 2010 Talk by D. Ward-Thompson on Wednesday Deconvolved FWHM size Location in mass vs. size diagram: 2 orders of magnitude below the density of self-gravitating Bonnor-Ebert isothermal spheres Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

Confirming the link between the prestellar CMF & the IMF Könyves et al. 2010 André et al. 2010 A&A special issue 341-541 prestellar cores in Aquila Prestellar Core Mass Function (CMF) in Aquila Complex IMF CMF CO clumps (Kramer et al. 1998) Factor ~ 2-9 better statistics than earlier studies: ε Salpeter s IMF e.g. Motte, André, Neri 1998; Johnstone et al. 2000; Beuther & Schilke 2004; Stanke et al. 2006; Enoch et al. 2006; Alves et al. 2007; Nutter & Ward-Thompson 07 Good (~ one-to-one) correspondence between core mass and system mass: M * = ε M core with ε ~ 0.2-0.4 in Aquila The IMF is at least partly determined by pre-collapse cloud fragmentation (cf. models by Padoan & Nordlund 2002, Hennebelle & Chabrier 2008)

The Polaris starless cores are not massive enough to form stars Mass Function of the Starless Cores in Polaris IMF CO clumps Salpeter s IMF André et al. 2010 The mass function of Polaris starless cores peaks at ~ 0.02 M, i.e., ~ one order of magnitude below the peak of the stellar IMF

Prestellar cores form out of a filamentary background Herschel (SPIRE+PACS) Column density map (H 2 /cm 2 ) 10 23 Curvelet component of column density map (H 2 /cm 2 ) 10 21 10 22 10 21 10 22 1 0.1Mline/Mline,crit Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

: Class 0 protostars 10 21 10 22 Prestellar cores form out of a filamentary background Aquila N H2 map (cm -2 ) : Prestellar cores - 80% found at A v (back) > 7 10 23 Aquila curvelet N H2 map (cm -2 ) 10 21 10 22 0.1Mline/Mline,crit Unstable Stable 1 Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010

Only the densest filaments are gravitationally unstable and contain prestellar cores ( ) Aquila curvelet N H2 map (cm -2 ) 10 21 10 22 André et al. 2010, A&A special issue 1 Unstable Mline/M line,crit 0.1 Stable The gravitational instability of filaments is controlled by the value of their mass per unit length M line (cf. Ostriker 1964, Inutsuka & Miyama 1997): unstable if M line > M line, crit stable if M line < M line, crit M line, crit = c s 2 /G ~ 15 M /pc for T = 10K Simple estimate: M line N H2 x Width Unstable filaments highlighted in white in the N H2 map

Polaris (d ~ 150 pc): Structure of the cold ISM prior to any star formation Polaris curvelet N H2 map (cm -2 ) 10 20 10 21 No prestellar cores (yet?) in Polaris 0.5 Filaments are already widespread prior to star formation André et al. 2010, A&A special issue 0.1Mline/Mline,crit 0.01 The maximum value of M line /M line, crit observed in the Polaris filaments is ~ 0.5 The Polaris filaments are gravitationally stable and unable to form prestellar cores and protostars at present

Filaments permeate the ISM on all scales Herschel SPIRE 500 µm + PACS 160/70 µm Planck HFI 540/350 µm + IRAS 100 µm Aquila ESA and the Gould Belt KP ESA and the HFI Consortium

Conclusions Gould Belt Cepheus Serpens Ophiuchus Lupus Herschel Aquila Main Taurus Perseus Aquila Chamaeleon CrA Orion IRAS 100 µm Our first results are extremely promising; exceed expectations! Confirm the close link between the prestellar CMF and the IMF Suggest an observationally-driven scenario of core formation: 1) Filaments form first in the cold ISM, possibly as a result of interstellar MHD turbulence; 2) The densest filaments then fragment into prestellar cores via gravitational instability. MANY THANKS TO ESA HSC + SPIRE & PACS ICCs Ph. André - ESLAB 2010 Herschel First Results - ESTEC 4 May 2010