Fundamentals of Mass Transfer



Similar documents
CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

Curve Fitting and Solution of Equation

The simple linear Regression Model

Simple Linear Regression

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

Questions? Ask Prof. Herz, General Classification of adsorption

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Average Price Ratios

1. The Time Value of Money

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

MODELLING AND SIMULATION OF LASER CHEMICAL PROCESSING (LCP) FOR THE MANUFACTURING OF SILICON SOLAR CELLS DISSERTATION

Mean Molecular Weight

Interlude: Interphase Mass Transfer

Numerical Methods with MS Excel

APPENDIX III THE ENVELOPE PROPERTY

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

4. Introduction to Heat & Mass Transfer

atm = 760 torr = 760 mm Hg = kpa = psi. = atm. = atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li

AP CHEMISTRY 2009 SCORING GUIDELINES (Form B)

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Finite Difference Method

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

Settlement Prediction by Spatial-temporal Random Process

Chemistry B11 Chapter 4 Chemical reactions

Chapter Eight. f : R R

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects

Credibility Premium Calculation in Motor Third-Party Liability Insurance

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

6.7 Network analysis Introduction. References - Network analysis. Topological analysis

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

vap H = RT 1T 2 = kj mol kpa = 341 K

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

Chapter = 3000 ( ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

A Parallel Transmission Remote Backup System

Analysis of one-dimensional consolidation of soft soils with non-darcian flow caused by non-newtonian liquid

Regression Analysis. 1. Introduction

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

α 2 α 1 β 1 ANTISYMMETRIC WAVEFUNCTIONS: SLATER DETERMINANTS (08/24/14)

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

Lecture 7. Norms and Condition Numbers

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Molar Mass of Butane

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy

STOCHASTIC approximation algorithms have several

Preparation of Calibration Curves

3.6. Metal-Semiconductor Field Effect Transistor (MESFETs)

Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network

Load and Resistance Factor Design (LRFD)

P 1 2 V V V T V V. AP Chemistry A. Allan Chapter 5 - Gases

Sequences and Series

CHAPTER 12. Gases and the Kinetic-Molecular Theory

Near Neighbor Distribution in Sets of Fractal Nature

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

k 2f, k 2r C 2 H 5 + H C 2 H 6

Basic statistics formulas

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Problem Set 3 Solutions

Vibration and Speedy Transportation

M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization

Numerical Comparisons of Quality Control Charts for Variables

Chapter 12 - Liquids and Solids

Study on prediction of network security situation based on fuzzy neutral network

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

Test Review # 9. Chemistry R: Form TR9.13A

The Digital Signature Scheme MQQ-SIG

Chapter 14 Solutions

Banking (Early Repayment of Housing Loans) Order,

Integrating Production Scheduling and Maintenance: Practical Implications

18 MW H2S 34 MW CO2. operate regenerator top without boiling aq. amine solution.

Report 52 Fixed Maturity EUR Industrial Bond Funds

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Chemistry 13: States of Matter

On Cheeger-type inequalities for weighted graphs

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

Chapter 8 - Chemical Equations and Reactions

IB Chemistry. DP Chemistry Review

48 Practice Problems for Ch Chem 1C - Joseph

Chapter 13: Properties of Solutions

HEAT UNIT 1.1 KINETIC THEORY OF GASES Introduction Postulates of Kinetic Theory of Gases

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts

Transcription:

Chapter Fudametals of Mass Trasfer Whe a sgle phase system cotas two or more speces whose cocetratos are ot uform, mass s trasferred to mmze the cocetrato dffereces wth the system. I a mult-phase system mass s trasferred due to the chemcal potetal dffereces betwee the speces. I a sgle phase system where temperature ad pressure are uform, the dfferece chemcal potetal s due to the varato cocetrato of each speces. Mass trasfer s the bass for may chemcal ad bologcal processes such as the removal of sulfur doxde from the flue gas, a chemcal process, or the desg of a artfcal kdey, a bologcal process.. Molecular Mass Trasfer For a bary mxture of ad B, the molar flux, N,z, of speces relatve to the z axs s N,z cd B dy + y (N,z + N B,z ) (.) I ths equato, c s the total molar cocetrato, D B s the dffusvty of B, y s the mole fracto of, ad N B,z s the molar flux of B. For a bary mxture D B D B. The dy term cd B s the molar flux, J, resultg from the cocetrato gradet ad the term y (N,z + N B,z ) s the molar flux resultg from the bulk flow of the flud. I a mult-compoet mxture, the cocetrato of a partcular speces ca be expressed mass or molar cocetrato. For speces, the mass cocetrato, ρ, s defed as the mass of per ut volume of the mxture. The total mass cocetrato s the desty of the mxture whch s the total mass of the mxture per ut volume. The total mass cocetrato s related to the speces mass cocetrato by ρ ρ (.2) I ths equato, s the umber of speces the mxture. The mass fracto, ω, s the mass cocetrato of speces dvded by the total mass desty, ω ρ ρ (.3) The mass cocetrato ad the molar cocetrato are related by c ρ M (.4) -

For a bary mxture of ad B, the mass flux,,z, of speces relatve to the z axs s dω,z ρd B + ω (,z + B,z ) (.5) The molar flux of speces ca be expressed as N c v (.6) I ths equato, s the absolute velocty of speces relatve to the statoary coordate axs. Smlarly, the mass flux of speces s gve by ρ v (.7) The total molar flux s the sum of the speces molar flux N cv (.8) I ths equato V s the molar average velocty defed by V c v c x v (.9) Smlarly, the total mass flux s the sum of the speces mass flux N cv (.) I ths equato v s the mass average velocty defed by v ρ v ρ ωv (.) Example.- ------------------------------------------------------------------------------ mxture of oxyge ad troge gas s cotaed a ppe at 298 K ad atm total pressure whch s costat throughout. t oe ed of the ppe the partal pressure p of oxyge s.7 atm ad at the other ed.8 m, p 2.2 atm. Calculate the molar ad mass flux of oxyge at steady state f D B of the mxture s.26 cm 2 /s. Soluto ---------------------------------------------------------------------------------------------- -2

Sce the temperature ad pressure s costat throughout the ppe, the total cocetrato s a costat. c P RT 4.9-5 mol/cm 3 82.57 298 Note: R 82.57 cm 3 atm/mol K The total cocetrato s a costat therefore N,z N B,z. Ths codto s kow as equmolar couterdffuso. The molar flux of s N,z cd B dy dy + y (N,z + N B,z ) cd B For steady state ad costat area of mass trasfer N,z costat. Separatg the varable ad tegratg N,z 2 cd B dy y y cdb( y y2) N,z 5 (4.9 )(.26)(.7.2) 8 The mass flux of O 2 s N,z 5.27-8 mol/cm 2 s,z M N,z (32)(5.27-8 ).69-6 g/cm 2 s Example.-2 ------------------------------------------------------------------------------ Water the bottom of a arrow metal tube s held at a costat temperature of 298 K. The dry ambet ar outsde the tube s at atm (.3 kpa) ad 298 K. Water evaporates ad dffuses through the ar the tube, ad the dffuso path z 2 z s 5 cm log. Calculate the rate of evaporato at steady state mol/s cm 2. The dffusvty of water vapor () ar (B) at atm ad 298 K s.25 cm 2 /s. ssume that ar s soluble water. 2 N r (B) Water () Soluto ---------------------------------------------------------------------------------------------- The molar flux of (water vapor) s N,z cd B dy + y (N,z + N B,z ) -3

Sce ar s soluble water, t s stagat (or odffusg) ad N B,z. Solvg for N,z gve N,z ( y ) cd B dy cd N,z y B dy N,z cd B dy y y2 2 N,z cd B l y y y The ambet ar s dry so y 2. Vapor pressure of water at 298 K s 3.7 kpa, therefore y 3.7/.3.33. N,z cdb l y2 y.25 82.57 298 5 l.33 6.5-9 mol/cm 2 s Example.-3 ------------------------------------------------------------------------------ Nckel carboyl () s produced by passg carbo mooxde (B) at 323 K ad atm over a ckel slab. The followg reacto takes place at the sold surface: N(s) + 4CO(g) N(CO) 4 (g) z z N B N Gas flm Nckel slab The reacto s very rapd, so that the partal pressure of CO at the metal surface s essetally zero. The gases dffuse through a flm wth a thckess.625 mm. Estmate the rate of producto of ckel carboyl, mole/s cm 2 of sold surface at steady state. The composto of the bulk gas phase (z ) s 5 mol% CO. The bary dffusvty s D B 2. mm 2 /s. Soluto ---------------------------------------------------------------------------------------------- The molar flux of (ckel carboyl) s N,z cd B dy + y (N,z + N B,z ) From the stochomerty of the reacto N B,z 4N,z. Therefore N,z + N B,z 3N,z N,z ( + 3y ) cd B dy cdb N,z + 3 y dy N,z cd B y, dy cd + 3y B N,z l, y, + 3y 3 + 3y, Sce y,.5 ad y,., we have Betez, J. Prcple ad Moder pplcatos of Mass Trasfer Operatos, Wley, 29, p. 44-4

N,z B cd 3 l + 3 +.5.2 3 82.57 323.625 l 4 2.5.89-5 mol/cm 2 s Example.-4 2 ------------------------------------------------------------------------------ crystal of chalcathte (CuSO 4 5H 2 O) dssolves a large tak of pure water accordg to the followg equato: () (2) CuSO 4 5H 2 O(s) CuSO 4 (aq) + 5H 2 O(l) Estmate the rate at whch the crystal dssolves by calculatg the flux of CuSO 4 from the crystal surface to the bulk soluto. ssume that molecular dffuso occurs through a lqud flm uformly. mm thck surroudg the crystal. t the er sde of the flm adjacet to the crystal surface the soluto s saturated wth CuSO 4 whle at the outer sde of the flm the soluto s vrtually pure water. qud flm The solublty of chalcathte water at 275 K s 24.3 g of crystal/ g of water, ad the desty of the correspodg saturated soluto s 4 kg/m 3. The dffusvty of CuSO 4 dlute aqueous soluto at 275 K ca be estmated as 3.6 - m 2 /s. Soluto ---------------------------------------------------------------------------------------------- For each mole of chalcathte (molecular weght 249.7) that dssolves, mole of CuSO 4 (molecular weght 59.63) ad 5 mole of hydrato water dffuse through the lqud flm from the surface of the crystal to the bulk of the lqud phase. et CuSO 4 ad B H 2 O the, N B 5N The molar flux of s N,z cd B dx dx + x (N,z + N B,z ) cd B + 6x N,z N,z cd B dx 6x Usg a average value for the total cocetrato c a, the above equato ca be tegrated over the thckess of the lqud flm,. N,z c a D B dx 6x x2 x 2 Betez, J. Prcple ad Moder pplcatos of Mass Trasfer Operatos, Wley, 29, p. 54-5

ca DB N,z 6 l 6x2 6x We eed the mole fracto of compoet at the er sde of the flm (x ), a saturated soluto of chalcathte water at 275 K. The solublty of the salt uder these codtos s 24.3 g/ g H 2 O. For a bass of g of H 2 O, we have 24.3 g of CuSO 4 5H 2 O. The mass of CuSO 4 24.3 of of the crystal s 24.3 59.63/249.7 5.53 g The mass of hydrato water the crystal s 24.3 5.53 8.77. The total mass of water s the + 8.77 8.77 g. Therefore, x 5.53 59.63 5.53 8.77 + 59.63 8.58 The other ed of the flm s vrtually pure water; therefore x 2. Next, we calculate the flm average molar cocetrato c a. t locato, the average molecular weght s M (.58)(59.63) + (.58)(8) 2.24 kg/kmol. The correspodg molar cocetrato s c 4/2.24 56.32 kmol/m 3. t locato 2, the molar cocetrato s c 2 /8 55.55 kmol/m 3. The c a.5(c + c 2 ).5(56.32 + 55.55) 55.93 kmol/m 3 ca DB N,z 6 l 6x2 6x 55.93 3.6 N,z 5 6 l 3.35-5 kmol/s m 2 6.58-6

.2 Gas dffusvtes Oe of the most commo method to estmate the bary gas dffusvty D B low pressure system was proposed by Wlke ad ee 3 : D B.98 3.3 ( ) T / 2 M B PM σ Ω / 2 2 B B D 3 3/ 2 (.2-) I ths equato: M B 2 + M M B D B dffuso coeffcet, cm 2 /s M, M B molecular weghts of ad B, respectvely T temperature, K P pressure, bar σ B collso dameter, a eard-joes parameter, agstrom Ω D dffuso collso tegral, dmesoless The collso tegral, Ω D, s a fucto of temperature ad termolecular potetal feld for oe molecule of ad oe molecule of B. It ca be approxmated by the followg expresso 4 : a Ω D ( *) b T c + exp( dt *) e + exp( ft *) g + exp( ht *) (.2-2) The parameters ths equato are lsted the followg table T* κt/ε B a.636 b.56 c.93 d.47635 e.3587 f.52996 g.76474 h 3.894 For a bary system of opolar molecular par, the eard-joes parameters ca be obtaed from the pure compoets by the followg expresso: σ B.5(σ + σ B ); ε B (ε ε ) /2 (.2-3) eard-joes parameters for pure compoets may be estmated from the followg correlatos: σ.8(v b ) /3 ε /κ.5t b (.2-3) V b.285(v c ).48 3 Wlke, C. R., ad C. Y. ee, Id. Eg. Chem., 47, 253 (955) 4 Neufeld, P. D.,. R. Jase, ad R.. zz, J. Chem. Phys., 57, (972) -7

Example.2-5 ------------------------------------------------------------------------------ Estmate the dffusvty of carbo dsulfde vapor ar at 273 K ad bar usg the Wlke- ee equato D B.98 3.3 ( ) T / 2 M B PM σ Ω / 2 2 B B D 3 3/ 2 Data: σ, o ε/κ, K Mw CS 2 4.483 467 76 r 3.62 97 29 Soluto ---------------------------------------------------------------------------------------------- σ B.5(σ + σ B ).5(4.483 + 3.62) 4.52 o ε B κ ε ε B κ κ / 2 (467 97) /2 22.8 K κt T* ε B a Ω D ( *) b T 273 22.8.283 c + exp( dt *) e + exp( ft *) g + exp( ht *) The parameters ths equato are lsted the followg table T* κt/ε B a.636 b.56 c.93 d.47635 e.3587 f.52996 g.76474 h 3.894 Ω D.282 M B 2 + M M B 2 + 76 29 4.98 Substtutg these values to the Wlke-ee equato yelds D B.98 3.3 ( )(273) / 2 4.98 3 3/ 2 / 2 2 ()(4.98) (4.52) (.282).952 cm 2 /s 5 Betez, J. Prcple ad Moder pplcatos of Mass Trasfer Operatos, Wley, 29, p. 2-8