CAPM, Arbitrage, and Linear Factor Models



Similar documents
Chap 3 CAPM, Arbitrage, and Linear Factor Models

The Capital Asset Pricing Model (CAPM)

Lesson 5. Risky assets

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah

Review for Exam 2. Instructions: Please read carefully

Models of Risk and Return

The Tangent or Efficient Portfolio

SAMPLE MID-TERM QUESTIONS

Lecture 6: Arbitrage Pricing Theory

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM)

Representation of functions as power series

Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Review for Exam 2. Instructions: Please read carefully

Portfolio Performance Measures

Chapter 13 : The Arbitrage Pricing Theory

AFM 472. Midterm Examination. Monday Oct. 24, A. Huang

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7

FIN Final (Practice) Exam 05/23/06

t = Calculate the implied interest rates and graph the term structure of interest rates. t = X t = t = 1 2 3

Lecture 1: Asset Allocation

Chapter 5. Conditional CAPM. 5.1 Conditional CAPM: Theory Risk According to the CAPM. The CAPM is not a perfect model of expected returns.

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

1 Another method of estimation: least squares

Midterm Exam:Answer Sheet

1 Capital Asset Pricing Model (CAPM)

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

One Period Binomial Model

CHAPTER 11: ARBITRAGE PRICING THEORY

Chapter 2. Dynamic panel data models

1.2 Solving a System of Linear Equations

Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance /63/64, Winter 2011

Chapter 13 Composition of the Market Portfolio 1. Capital markets in Flatland exhibit trade in four securities, the stocks X, Y and Z,

1 Portfolio mean and variance

Chapter 11, Risk and Return

Chapter 3: The Multiple Linear Regression Model

Forward Contracts and Forward Rates

1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises.

Minimum variance portfolio mathematics

CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset

Lecture Notes 10

Common sense, and the model that we have used, suggest that an increase in p means a decrease in demand, but this is not the only possibility.

1 Present and Future Value

The Risk-Free Rate s Impact on Stock Returns with Representative Fund Managers

Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10?

M.I.T. Spring 1999 Sloan School of Management First Half Summary

Chapter 5 Financial Forwards and Futures

LECTURE 17: RISK AND DIVERSIFICATION

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

The Real Business Cycle Model

160 CHAPTER 4. VECTOR SPACES

Chapter 11. Topics Covered. Chapter 11 Objectives. Risk, Return, and Capital Budgeting

Margin Requirements and Equilibrium Asset Prices

Forwards, Swaps and Futures

Hedging Using Forward Contracts

Rate of Return. Reading: Veronesi, Chapter 7. Investment over a Holding Period

Caput Derivatives: October 30, 2003

Introduction to Binomial Trees

EXERCISES FROM HULL S BOOK

NBER WORKING PAPER SERIES CARRY TRADES AND RISK. Craig Burnside. Working Paper

Partial Fractions Decomposition

CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT

QUIZ Principles of Macroeconomics May 19, I. True/False (30 points)

Note: There are fewer problems in the actual Final Exam!

Practice Set #4 and Solutions.

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

A Mean-Variance Framework for Tests of Asset Pricing Models

Options Markets: Introduction

Chapter 5. Risk and Return. Copyright 2009 Pearson Prentice Hall. All rights reserved.

Exact Nonparametric Tests for Comparing Means - A Personal Summary

Mid-Term Spring 2003

Models of Asset Pricing The implications for asset allocation

The relationship between exchange rates, interest rates. In this lecture we will learn how exchange rates accommodate equilibrium in

Demand. Lecture 3. August Reading: Perlo Chapter 4 1 / 58

Investing in Foreign Currency is like Betting on your Intertemporal Marginal Rate of Substitution.

Futures Price d,f $ 0.65 = (1.05) (1.04)

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Market Power, Forward Trading and Supply Function. Competition

An Overview of Asset Pricing Models

Study Questions for Chapter 9 (Answer Sheet)

Journal of Exclusive Management Science May Vol 4 Issue 5 - ISSN

Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model

Risk and Return Models: Equity and Debt. Aswath Damodaran 1

Problem Set 6 - Solutions

What you will learn: UNIT 3. Traditional Flow Model. Determinants of the Exchange Rate

Lecture 3: CAPM in practice

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem

Choice under Uncertainty

2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold

WEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y X

XII. RISK-SPREADING VIA FINANCIAL INTERMEDIATION: LIFE INSURANCE

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Basic Financial Tools: A Review. 3 n 1 n. PV FV 1 FV 2 FV 3 FV n 1 FV n 1 (1 i)

Estimating Risk free Rates. Aswath Damodaran. Stern School of Business. 44 West Fourth Street. New York, NY

Transcription:

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41

Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors aggregate asset demands to aggregate asset supply, an equilibrium single risk factor pricing model (CAPM) can be derived. Relaxing CAPM assumptions may allow for multiple risk factors. Arbitrage arguments can be used to derive a multifactor pricing model (APT) Multifactor models are very popular in empirical asset pricing CAPM, Arbitrage, Linear Factor Models 2/ 41

Review of Mean-Variance Portfolio Choice Recall that for n risky assets and a risk-free asset, the optimal portfolio weights for the n risky assets are! = V 1 R R f e (1) where R p R f R R f e 0 V 1 R R f e. The amount invested in the risk-free asset is then 1 e 0!. R p is determined by where the particular investor s indi erence curve is tangent to the e cient frontier. All investors, no matter what their risk aversion, choose the risky assets in the same relative proportions. CAPM, Arbitrage, Linear Factor Models 3/ 41

Tangency Portfolio Also recall that the e cient frontier is linear in p and R p : R p = R f + R R f e 0 V 1 R R f e 1 2 p (2) This frontier is tangent to the risky asset only frontier, where the following graph denotes this tangency portfolio as! m located at point m, R m. CAPM, Arbitrage, Linear Factor Models 4/ 41

Graph of E cient Frontier CAPM, Arbitrage, Linear Factor Models 5/ 41

The Tangency Portfolio Note that the tangency portfolio satis es e 0! m = 1. Thus e 0 V 1 R R f e = 1 (3) or h = m R R f e 0 V 1 ei 1 (4) so that! m = mv 1 (R R f e) (5) CAPM, Arbitrage, Linear Factor Models 6/ 41

Asset Covariances with the Tangency Portfolio Now de ne M as the n 1 vector of covariances of the tangency portfolio with each of the n risky assets. It equals M = V! m = m(r R f e) (6) By pre-multiplying equation (6) by! m 0, we also obtain the variance of the tangency portfolio: 2 m =! m 0 V! m =! m 0 M = m! m 0 (R R f e) (7) = m(r m R f ) where R m! m 0 R is the expected return on the tangency portfolio. CAPM, Arbitrage, Linear Factor Models 7/ 41

Expected Excess Returns Rearranging (6) and substituting in for 1 m = 1 2 m (R m R f ) from (7), we have (R R f e) = 1 m M = M 2 (R m R f ) = (R m R f ) (8) m where M Cov (~R m; R e i ). Var (~R m) 2 m is the n 1 vector whose i th element is Equation (8) links the excess expected return on the tangency portfolio, (R m R f ), to the excess expected returns on the individual risky assets, (R R f e). CAPM, Arbitrage, Linear Factor Models 8/ 41

CAPM The Capital Asset Pricing Model is completed by noting that the tangency portfolio,! m, chosen by all investors must be the equilibrium market portfolio. Hence, R m and 2 m are the mean and variance of the market portfolio returns and M is its covariance with the individual assets. Aggregate supply can be modeled in di erent ways (endowment economy, production economy), but in equilibrium it will equal aggregate demands for the risky assets in proportions given by! m. Also R f < R mv for assets to be held in positive amounts (! m i > 0). CAPM, Arbitrage, Linear Factor Models 9/ 41

CAPM: Realized Returns De ne asset i s and the market s realized returns as ~R i = R i + ~ i and ~R m = R m + ~ m where ~ i and ~ m are the unexpected components. Substitute these into (8): ~R i = R f + i (~R m ~ m R f ) + ~ i (9) = R f + i (~R m R f ) + ~ i i ~ m = R f + i (~R m R f ) + e" i where e" i ~ i i ~ m. Note that Cov(~R m ;e" i ) = Cov(~R m ; ~ i ) i Cov(~R m ; ~ m ) (10) Cov(~R m ; ~R i ) = Cov(~R m ; ~R i ) Cov(~R m ; ~R m ) Var(~R m ) = Cov(~R m ; ~R i ) Cov(~R m ; ~R i ) = 0 CAPM, Arbitrage, Linear Factor Models 10/ 41

Idiosyncratic Risk Since Cov(~R m ;e" i ) = 0, from equation (9) we see that the total variance of risky asset i, 2 i, equals: 2 i = 2 i 2 m + 2 " i (11) Another implication of Cov(~R m ;e" i ) = 0 is that equation (9) represents a regression equation. The orthogonal, mean-zero residual, e" i, is referred to as idiosyncratic, unsystematic, or diversi able risk. Since this portion of the asset s risk can be eliminated by the individual who invests optimally, there is no price or risk premium attached to it. CAPM, Arbitrage, Linear Factor Models 11/ 41

What Risk is Priced? To make clear what risk is priced, denote Mi = Cov(~R m ; R e i ), which is the i th element of M. Also let im be the correlation between R e i and ~R m. Then equation (8) can be rewritten as R i R f = Mi 2 (R m R f ) = Mi (R m R f ) (12) m m m (R m R f ) = mi i m = mi i S e where S e ( R m R f ) m is the equilibrium excess return on the market portfolio per unit of market risk. CAPM, Arbitrage, Linear Factor Models 12/ 41

What Risk is Priced? cont d S e ( R m R f ) m is known as the market Sharpe ratio. It represents the market price of systematic or nondiversi able risk, and is also referred to as the slope of the capital market line, where the capital market line is the e cient frontier that connects the points R f and R m; m. Now de ne! m i as the weight of asset i in the market portfolio and V i as the i th row of V. Then @ m @! m i = 1 2 m @ 2 m @! m i = 1 2 m @! m V! m @! m i where ij is the i; j th element of V. = 1 2 m 2V i! m = 1 m nx! m j ij j=1 (13) CAPM, Arbitrage, Linear Factor Models 13/ 41

What Risk is Priced? cont d! m j j=1 Since ~R m = n P (13) is @ m @! m i P ~R j, then Cov(~R i ; ~R m ) = n! m j ij. Hence, j=1 = 1 m Cov(~R i ; ~R m ) = im i (14) Thus, im i is the marginal increase in market risk, m, from a marginal increase of asset i in the market portfolio. Thus im i is the quantity of asset i s systematic risk. We saw in (12) that im i multiplied by the price of systematic risk, S e, determines an asset s required risk premium. CAPM, Arbitrage, Linear Factor Models 14/ 41

Zero-Beta CAPM (Black, 1972) Does a CAPM hold when there is no riskless asset? Suppose the economy has I total investors with investor i having a proportion W i of the economy s total initial wealth and choosing an e cient frontier portfolio! i = a + b R ip, where R ip re ects investor i s risk aversion. Then the risky asset weights of the market portfolio are! m = = a IX W i! i = i=1 IX W i + b i=1 where R m P I i=1 W i R ip. CAPM, Arbitrage, Linear Factor Models 15/ 41 IX i=1 W i a + b R ip IX W i R ip = a + b R m i=1 (15)

Zero-Beta CAPM cont d Equation (15) shows that the aggregate market portfolio,! m, is a frontier portfolio and its expected return, R m, is a weighted average of the expected returns of the individual investors portfolios. Consider the covariance between the market portfolio and an arbitrary risky portfolio with weights! 0, random return of er 0p, and mean return of R 0p : Cov erm ; e R 0p =! m0 V! 0 = a + b R m 0 V! 0 (16) &V 1 e V 1 R = & 2 + V 1 R V 1 0 e R & 2 m V! 0 CAPM, Arbitrage, Linear Factor Models 16/ 41

Zero-Beta CAPM cont d Rearranging (16) gives = &e0 V 1 V! 0 R 0 V 1 V! 0 & 2 + R m R 0 V 1 V! 0 R m e 0 V 1 V! 0 & 2 = & R 0p + R m R 0p R m & 2 R 0p = R m & R m + Cov erm ; R e & 2 0p R m Recall from (2.32) that 2 m = 1 + (R m ) 2 CAPM, Arbitrage, Linear Factor Models 17/ 41 & 2 (17)

Zero-Beta CAPM cont d Multiply and divide the second term of (17) by 2 m, and add and subtract 2 from the top and factor out from the bottom of the rst term to obtain: R 0p = = & 2 Cov erm; e 0 R 0p + 2 R m 2 m & 2 Cov erm; e 0 R 0p + @R 2 R m 2 m m B @ 1 + 2 1 R m C & 2 A & 2 R m 1 + & 2 A 2 R m (18) From (2.39), the rst two terms of (18) equal the expected return on the portfolio that has zero covariance with the market portfolio, call it R zm. Thus, equation (18) can be written as CAPM, Arbitrage, Linear Factor Models 18/ 41

Zero-Beta CAPM cont d Cov erm ; e R 0p R 0p = R zm + 2 m = R zm + 0 R m R zm R m R zm (19) Since! 0 is any risky-asset portfolio, including a single asset portfolio, (19) is identical to the previous CAPM result (12) except that R zm replaces R f. Thus, a single factor CAPM continues to exist when there is no riskless asset. Stephen Ross (1976) derived a similar multifactor relationship, not based on investor preferences but rather the principle of arbitrage. CAPM, Arbitrage, Linear Factor Models 19/ 41

Arbitrage If a portfolio with zero net investment cost can produce gains, but never losses, it is an arbitrage portfolio. In e cient markets, arbitrage should be temporary: exploitation by investors moves prices to eliminate it. If equilibrium prices do not permit arbitrage, then the law of one price holds: If di erent assets produce the same future payo s, then the current prices of these assets must be the same. Not all markets are always in equilibrium: in some cases arbitrage trades may not be possible. CAPM, Arbitrage, Linear Factor Models 20/ 41

Example: Covered Interest Parity Covered interest parity links spot and forward foreign exchange markets to foreign and domestic money markets. Let F 0 be the current date 0 forward price for exchanging one unit of a foreign currency periods in the future, e.g. the dollar price to be paid periods in the future for delivery of one unit of foreign currency periods in the future. Let S 0 be the spot price of foreign exchange, that is, the current date 0 dollar price of one unit of foreign currency to be delivered immediately. Also let R f be the per-period risk-free (money market) return for borrowing or lending in dollars over the period 0 to, and denote as Rf the per-period risk-free return for borrowing or lending in the foreign currency over the period 0 to. CAPM, Arbitrage, Linear Factor Models 21/ 41

Covered Interest Parity cont d Now let s construct a zero net cost portfolio. 1 Sell forward one unit of foreign currency at price F 0 (0 cost). 2 Purchase the present value of one unit of foreign currency, 1=Rf and invest in a foreign bond at Rf. (S 0=Rf cost). 3 Borrow S 0 =Rf dollars at the per-period return R f ( S 0 =Rf cost) At date, note that the foreign currency investment yields Rf =Rf = 1 unit of the foreign currency, which covers the short position in the forward foreign exchange contract. For delivering this foreign currency, we receive F 0 dollars but we also owe a sum of Rf S 0=Rf due to our dollar borrowing. Thus, our net proceeds at date are CAPM, Arbitrage, Linear Factor Models 22/ 41 F 0 R f S 0=R f (20)

Covered Interest Parity cont d These proceeds are nonrandom; they depend only on prices and riskless rates quoted at date 0. If this amount is positive (negative), then we should buy (sell) this portfolio as it represents an arbitrage. Thus, in the absence of arbitrage, it must be that F 0 = S 0 R f =R f (21) which is the covered interest parity condition: given S 0, R f and R f, the forward rate is pinned down. Thus, when applicable, pricing assets or contracts by ruling out arbitrage is attractive in that assumptions regarding investor preferences or beliefs are not required. CAPM, Arbitrage, Linear Factor Models 23/ 41

Example: Arbitrage and CAPM Suppose a single source of (market) risk determines all risky-asset returns according to the linear relationship er i = a i + b i ~f (22) where e R i is the i th asset s return and ~f is a single risk factor generating all asset returns, where E[~f ] = 0 is assumed. a i is asset i s expected return, that is, E[ e R i ] = a i. b i is the sensitivity of asset i to the risk factor (asset i s beta coe cient). There is also a riskfree asset returning R f. Now construct a portfolio of two assets, with a proportion! invested in asset i and (1!) invested in asset j. CAPM, Arbitrage, Linear Factor Models 24/ 41

Arbitrage and CAPM cont d This portfolio s return is given by er p =!a i + (1!)a j +!b i ~f + (1!)b j ~f (23) =!(a i a j ) + a j + [!(b i b j ) + b j ] ~f If the portfolio weights are chosen such that! = b j b j b i (24) then the random component of the portfolio s return is eliminated: R p is risk-free. The absence of arbitrage requires R p = R f, so that R p =! (a i a j ) + a j = R f (25) CAPM, Arbitrage, Linear Factor Models 25/ 41

Arbitrage and CAPM cont d Rearranging this condition which can also be written as a i b j (a i a j ) b j b i + a j = R f b j a i b i a j = R f b j b i R f b i = a j R f b j (26) which states that expected excess returns, per unit of risk, must be equal for all assets. is de ned as this risk premium per unit of factor risk. CAPM, Arbitrage, Linear Factor Models 26/ 41

Arbitrage and CAPM cont d Equation (26) is a fundamental relationship, and similar law-of-one-price conditions hold for virtually all asset pricing models. For example, we can rewrite the CAPM equation (12) as R i R f = ( R m R f ) S e (27) im i m so that the ratio of an asset s expected return premium, R i R f, to its quantity of market risk, im i, is the same for all assets and equals the slope of the capital market line, S e. What can arbitrage arguments tell us about more general models of risk factor pricing? CAPM, Arbitrage, Linear Factor Models 27/ 41

Linear Factor Models The CAPM assumption that all assets can be held by all individual investors is clearly an oversimpli cation. In addition to the risk from returns on a global portfolio of marketable assets, individuals are likely to face multiple sources of nondiversi able risks. This is a motivation for the multifactor Arbitrage Pricing Theory (APT) model. APT does not make assumptions about investor preferences but uses arbitrage pricing to restrict an asset s risk premium. Assume that there are k risk factors and n assets in the economy, where n > k. Let b iz be the sensitivity of the i th asset to the z th risk factor, where ~f z is the random realization of risk factor z. CAPM, Arbitrage, Linear Factor Models 28/ 41

Linear Factor Models cont d Let e" i be idiosyncratic risk speci c to asset i, which by de nition is independent of the k risk factors, ~f 1,...,~f k, and the speci c risk of any other asset j, e" j. For a i, the expected return on asset i, the linear return-generating process is assumed to be er i = a i + P k z=1 b iz f ~ z + e" i (28) h i i where E [e" i ] = E f ~ z = E he" i ~f z = 0 and E [e" i e" j ] = 0 8 i 6= j. The risk factors are transformed toh be imutually independent and normalized to unit variance, E f ~ z 2 = 1. CAPM, Arbitrage, Linear Factor Models 29/ 41

Linear Factor Models cont d Finally, the idiosyncratic variance is assumed nite: E e" 2 i s 2 i < S 2 < 1 (29) Note Cov eri ; ~f z = Cov b iz ~f z ; ~f z = b iz Cov f ~ z ; ~f z = b iz. In the previous example there was only systematic risk, which we could eliminate with a hedge portfolio. Now each asset s return contains an idiosyncratic risk component. We will use the notion of asymptotic arbitrage to argue that assets expected returns will be "close" to the relationship that would result if they had no idiosyncratic risk, since it is diversi able with a large number of assets. CAPM, Arbitrage, Linear Factor Models 30/ 41

Arbitrage Pricing Theory Consider a portfolio of n assets where ij is the covariance between the returns on assets i and j and the portfolio s investment amounts are W n [W n 1 W n 2 ::: W n n ] 0. Consider a sequence of these portfolios where the number of assets in the economy is increasing, n = 2; 3; : : :. De nition: An asymptotic arbitrage exists if: (A) The portfolio requires zero net investment: P n i=1 W n i = 0 (B) The portfolio return becomes certain as n gets large: P lim n P n n!1 i=1 j=1 W i n Wj n ij = 0 CAPM, Arbitrage, Linear Factor Models 31/ 41

Arbitrage Pricing Theory cont d (C) The portfolio s expected return is always bounded above zero P n i=1 W n i a i > 0 Theorem: If no asymptotic arbitrage opportunities exist, then the expected return of asset i, i = 1; :::; n, is described by the following linear relation: a i = 0 + P k z=1 b iz z + i () where 0 is a constant, z is the risk premium for risk factor e f z, z = 1; :::; k, and the expected return deviations, i, satisfy CAPM, Arbitrage, Linear Factor Models 32/ 41

Arbitrage Pricing Theory cont d P n i=1 i = 0 (i) P n i=1 b iz i = 0; z = 1; :::; k (ii) lim n!1 1 P n i=1 n 2 i = 0 (iii) Note that (iii) says that the average squared error (deviation) from the pricing rule () goes to zero as n becomes large. Thus, as the number of assets increases relative to the risk factors, expected returns will, on average, become closely approximated by the relation a i = 0 + P k z=1 b iz z. CAPM, Arbitrage, Linear Factor Models 33/ 41

Arbitrage Pricing Theory cont d Also note that if there is a risk-free asset (b iz = 0, 8 z), its return is approximately 0. Proof: For a given n > k, think of running a cross-sectional regression of the a i s on the b iz s by projecting the dependent variable vector a = [a 1 a 2 ::: a n ] 0 on the k explanatory variable vectors b z = [b 1z b 2z ::: b nz ] 0, z = 1; :::; k. De ne i as the regression residual for observation i, i = 1; :::; n. Denote 0 as the regression intercept and z, z = 1; :::; k, as the estimated coe cient on explanatory variable z. The regression estimates and residuals must then satisfy a i = 0 + P k z=1 b iz z + i (30) CAPM, Arbitrage, Linear Factor Models 34/ 41

Arbitrage Pricing Theory cont d By the properties of OLS, P n i=1 i = 0 and P n i=1 b iz i = 0, z = 1; :::; k. Thus, we have shown that (), (i), and (ii) can be satis ed. The last and most important part of the proof is to show that (iii) must hold in the absence of asymptotic arbitrage. Construct a zero-net-investment arbitrage portfolio with the following investment amounts: W i = i q Pn i=1 2 i n (31) so that greater amounts are invested in assets having the greatest relative expected return deviation. CAPM, Arbitrage, Linear Factor Models 35/ 41

Arbitrage Pricing Theory cont d The arbitrage portfolio return is given by ~R p = = nx W i Ri e (32) i=1 " nx # " nx!# 1 q Pn i e 1 kx Ri = q Pn i a i + b iz ~f z + e" i i=1 2 i n i=1 i=1 2 i n i=1 z=1 Since P n i=1 b iz i = 0, z = 1; :::; k, this equals ~R p = 1 P q Pn [ n i=1 2 i n i=1 i (a i + e" i )] (33) CAPM, Arbitrage, Linear Factor Models 36/ 41

Arbitrage Pricing Theory cont d Calculate this portfolio s mean and variance. Taking expectations: h i E R ~ p = 1 P q Pn [ n i=1 2 i n i=1 i a i ] (34) since E[e" i ] = 0. Substitute a i = 0 + P k z=1 b iz z + i : "! h i E R ~ 1 nx kx nx nx p = q Pn 0 i + z i b iz + i=1 2 i n i=1 z=1 i=1 i=1 (35) and since P n i=1 i = 0 and P n i=1 i b iz = 0, this simpli es to 2 i # CAPM, Arbitrage, Linear Factor Models 37/ 41

Arbitrage Pricing Theory cont d h i E R ~ p = 1 q Pn i=1 2 i n v nx 2 u i = t 1 n i=1 nx 2 i (36) i=1 Calculate the variance. First subtract (34) from (33): h i ~R p E R ~ 1 P p = q Pn [ n i=1 2 i n i=1 ie" i ] (37) Since E[e" i e" j ] = 0 for i 6= j and E[e" 2 i ] = si 2: ~ h i P 2 n P n E R p E R ~ i=1 p = 2 i s2 i n P i=1 n < 2 i S 2 i=1 2 i n P n i=1 2 i CAPM, Arbitrage, Linear Factor Models 38/ 41 = S 2 n (38)

Arbitrage Pricing Theory cont d Thus, as n! 1, the variance of the portfolio s return goes to zero, and the portfolio s actual return converges to its expected return in (36): h i r lim ~R p = E R ~ 1 P p = n n!1 i=1 n 2 i (39) and absent asymptotic arbitrage opportunities, this certain return must equal zero. This is equivalent to requiring which is condition (iii). lim n!1 1 P n i=1 n 2 i = 0 (40) CAPM, Arbitrage, Linear Factor Models 39/ 41

Arbitrage Pricing Theory cont d We see that APT, given by the relation a i = 0 + P k z=1 b iz z, can be interpreted as a multi-beta generalization of CAPM. However, whereas CAPM says that its single beta should be the sensitivity of an asset s return to that of the market portfolio, APT gives no guidance as to what are the economy s multiple underlying risk factors. Empirical implementations include Chen, Roll and Ross (1986), Fama and French (1993), Heaton and Lucas (2000), Chen, Novy-Marx and Zhang (2011). We will later develop another multi-beta asset pricing model, the Intertemporal CAPM (Merton, 1973). CAPM, Arbitrage, Linear Factor Models 40/ 41

Summary The CAPM arises naturally from mean-variance analysis. CAPM and APT can also be derived from arbitrage arguments and linear models of returns. Arbitrage pricing arguments are very useful for pricing complex securities, e.g. derivatives. CAPM, Arbitrage, Linear Factor Models 41/ 41