Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S



Similar documents
Solid Oxide Fuel Cell mchp Demonstration

Brennstoffzellen-Systeme von der Forschung zur Kommerzialisierung: Integration Simulation Testen

Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant. M. Henke, C. Willich, M. Steilen, J. Kallo, K. A. Friedrich

Benvenuti in SOFCpower!

Options for tar reforming in biomass gasification. Klas J. Andersson, Poul Erik Højlund Nielsen - IFC 2012

Danmark satser på konvertering og lagring

Half the cost Half the carbon

Balance of Fuel Cell Power Plant (BOP)

Transport phenomena and reaction engineering: basic research and practical applications

Richard Drake Program Manager, Power Systems R&D New York State Energy R&D Authority Albany, NY

Fuels from Renewable Sources. John Bøgild Hansen - Haldor Topsøe

Fuel Cell as a Green Energy Generator in Aerial Industry

The Impact of Scale-Up and Production Volume on SOFC Stack Cost Jan H. J. S. Thijssen, J. Thijssen, LLC, Redmond, WA, USA

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, :00 h

FLOX Steam Reforming - Hydrogen for Fuel Cells

Fuel cells for long distance emobility: Content

Mcllvaine Hot Topic Hour Air pollution control for gas turbines

Concepts in Syngas Manufacture

Concepts and systems for power production and storage using solid oxide cells

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Vincenzo Esposito. Università di Roma Tor Vergata

Stationary Fuel Cell Power Systems with Direct FuelCell Technology Tackle Growing Distributed Baseload Power Challenge

John Bøgild Hansen, Haldor Topsøe. Energinet.dk s VE gas dag 2011 En industriaktørs synspunkter

Haldor Topsøe Catalysing Your Business

Zarz dzanie Energi i Teleinformatyka

Simply SOFC. SOFC Generators for easy integration. Olivier Bucheli SOFCpower-HTceramix. Proprietary Information HTceramix-SOFCpower

Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien. Hermann HOFBAUER, TU Wien

moehwald Bosch Group

Introduction to portfolio of Hydrogen Production, Distribution and Storage projects. Nikolaos Lymperopoulos, Project Manager

Overview of CO 2 conversion R&D in Europe

Routes towards affordable storage of sustainable energy

Development of a 2 kw Direct Methanol Fuel Cell System for Backup Power

BorsodChem MCHZ, Czech Republic. 6,000 Nm 3 /h HTCR Topsøe Hydrogen Plant A Case Story: 18 Months from Engineering to Operation

High temperature electrolysis (SOEC) for the production of renewable fuels

New Bio Solutions. DONG Energy. Pyroneer November May 2013

Maritime Fuel Cells - durability and performance aspects Anders Ødegård, SINTEF

TIGAS Topsøe s s Improved Gasoline Synthesis

High Flux Steam Reforming

Combined Heat & Power (CHP) UGI Webinar. Presented By: Barry Wentzel, UGI Utilities Eric Burgis, Energy Solutions Center June 18, 2013

Practical Examples of Galvanic Cells

How To Run A Power Plant In Celje

Technologies for small scale Biomass CHP-Plants an actual survey

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting Prof. E. Peled School of Chemistry Tel Aviv University, Israel

Dual Fuel Medium Speed Product. Presenter Name Date

Corporate Presentation SEPTEMBER MAY 2014

Fuel Cell Handbook (Seventh Edition)

Overview of Topsøe Synthesis Technologies for BTL and bio-sng

5 kw Alkaline fuel cells target commercialization

COPPER BARS FOR THE HALL-HÉROULT PROCESS

Hybrid Power Generations Systems, LLC

Development of Grid-stabilization Power-storage Systems Using Lithium-ion Rechargeable Batteries

Electrolysis for grid balancing Where are we?

Future. Future-Oriented Strategies

Commercial Gas Furnace Upflow

An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach

To conclude with recommendations for a second project phase, where one or more demonstration storage systems will be tested experimentally.

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST

FUEL CELL FUNDAMENTALS

PROcesses, Materials and Solar Energy PROMES-CNRS Laboratory, France

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I

2. Fuel Cell of POSCO Power. 3. Status of Fuel Cell Business. 4. Status of the fuel cell Develop. 5. Green Growth Vision

Evaluating Thermal & Catalytic Oxidation Technology for VOC, HAP & Odor Abatement. John Strey

IWE slide: 1, 9/17/2009

FUEL CELLS FOR BUILDING APPLICATIONS

GLOBACON 05 HVAC Systems for Cogen

AREVA's Energy Storage Solutions

HEAVY DUTY STORAGE GAS

Potential of Steam Energy in PV-Hybrid Systems. Prof. Dr.-Ing. Klaus Brinkmann

David Mezzacappa, P.E. SCS Engineers Contractor to U.S. EPA on LMOP

IV.H.2 New York State Hi-Way Initiative*

Steve Harris. UC Berkeley

Draft Case Study for xx CDM Landfill Gas Project presented at a World Bank Workshop Page 1 of 16 BANDEIRANTES-SAO PAULO-BRAZIL FOR CASE STUDIES

Fuel Cell Activities at TU Graz

A Review of Biomass Boiler Technologies. Fernando Preto CanmetENERGY, Natural Resources Canada

Fluidized Bed Based CO 2 Capture by Carbonate Looping

SELECTION GUIDE. Nominal Input

Ceramic Fuel Cells World Leader in Fuel Cell Technology Clifford Ashby, CFO August, 2014

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Optimization of Steel and Methanol Production in an Integrated

Thermoelectric Generator (TEG) for Heavy Diesel Trucks John C. Bass, Aleksandr S. Kushch, Norbert B. Elsner Hi-Z Technology, Inc.

Experience with co-combustion of biomass and waste in coal-fired power plants

ATMOSPHERIC EMISSIONS FROM GAS FIRED HOME HEATING APPLIANCES

Prospects and Challenges for Fuel Cell Applications Paul Lebutsch

Innovative processes for thermochemical SNG production from biomass

Development and Operating Results of Low SO2 to SO3 Conversion Rate Catalyst for DeNOx Application

Cella Energy Safe, low cost hydrogen storage. Chris Hobbs

Fuel Cell Powered Data Centers: In-Rack DC Generation

High Performance Free-Piston Stirling Engines

Top Technology for Industry, Agriculture, Business and Communities

Supporting Information

Key challenges for industrial use of research infrastructure Alfons Molenbroek

ETC -SV. Class 0 oil-free compressed air through catalysis

Wasserstoff und Brennstoffzellen. E.V.A. / bmvit Workshop Wien, Stand Alone Photovoltaic Fuel Cell Hybrid Systems

The testo 340 What makes it The Ultimate Combustion Tuner?

Transcription:

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S

Briefly on Topsoe Fuel Cell Development, marketing and sales of SOFC technology Founded in 2004 Subsidiary of Haldor Topsøe A/S (wholly owned) SOFC research & development since 1989 Full time employees: 30 (January 2007) 50 (June 2007) Strategic R&D partner: Risø National Laboratory (50 empl. engaged in SOFC) TOFC s Position in the Value Chain System Integrator Fuel Materials & components Fuel cell stack Fuel cell device End use Service/ maintenance

SOFC Principles H 2 + O 2- H 2 O + 2e - Anode - O 2- Electrolyte O 2- Catode ½O 2 + 2e - O 2-

Power Generation

Generic SOFC unit Control DC/AC converter AC electricity Air Natural gas Filter/ blower Preheat Preheat Desulfurization Prereformer Fuel cell stack CO 2 Water

SOFC Development at Topsoe/Risø 1989 1997: Electrolyte-supported cells Operation temperature: 1000 C Ceramic interconnect 500 W HTAS/Risø stack (>500 h in 1996) 1997 2005: Anode-supported cells Operation temperature: 700-850 C Metallic interconnect 100 W HTAS stack (>12000 h in 2004) 1 kw+ HTAS stack (in 2003) 2003 and future: Metal-supported cells Operation temperature: 500-700 C

Anode supported planar Cells Thin Planar Cells 375 m Cell voltage [V] 1.2 1.1 1.0 0.9 0.8 Single Cell Performance 0.7 0.4 0.6 850 C 750 C 650 C > 1,5 W/cm 2 1.6 1.2 0.8 0.0 Power density [W/cm 2 ] 0.50 0.0 0.5 1.0 1.5 2.0 2.5 Current density [A/cm 2] Wide temperature operation window

Manufacture of Anode-supported Cells High Tech - Industrially Relevant - Low cost

Anode supported Cells 22x50 cm2 24x24 cm2 21 cm 12x12 cm2 Our largest cell to day: 22 x 50 cm2

The Topsoe Stack Concept Compact Multilayer Design 75-Cell Stack (750-800 oc) 1 mm per repeatable unit 2.4 kw/liter at 0,38 A/cm2 0,25 kw/ kg 60 V at 20A Five cell stack 75 mm 13000 hours + 9 full thermal cykles 5 4,5 4 3,5 Volt 3 2,5 2 120 mm 1,5 1 120 mm 0,5 0 0 12x12 cm2 2000 4000 6000 8000 Hours 10000 12000 14000

Larger Cells: 18 x 18 cm2 75 cells 12x12 cm2 Stack Voltage [V] Degradation at high power density Stack 8 0.55 W/cm2 durability 0,7 A/cm2 800 7 700 6 600 5 500 4 400 Stack Voltage Voltage at 75% F.U. 3 Stack Power 300 Power at 75% F.U. 2 200 1 100 0 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Current [A] 60 cells 18x18 cm2 Co-flow 160 Stack Power [W] Cost / performance optimization

Flow geometry Modelling and Experimental 850 850 850 800 800 800 750 700 750 750 650 700 700 600 650 650 600 600 Cross flow Co flow Counter flow Flow design Counterflow Crossflow Coflow Temp. gradient ( C/m) Temp. average ( C) Power density (W/cm 2 ) 2610 750 0.264 4110 692 0.146 2360 728 0.218 U (V) 65 64 63 62 61 60 Counter-flow 59 12 14 16 18 20 22 24 26 28 30 32 I (Amp) 75-Cell Stack Natural Gas FU: 65% 1.8 kw

Stack Modelling Cross-flow, 18x18 cm 2 foot print Finite elemente Modelling Large temperature gradient

Cell development - Generations Reduced cost Improved reliability ceramic support metallic support 1000 o C 850 o C 700 o C 600 o C

SOFC System Development

Product Requirements Comparison (2) CHP APU S.U. time, min. 480 <20 Lifetime, hours 40000 10000 Efficiency (el),% >45 >35 Maintenance, h 7000 1200 Cycles 50 5000 Cost $/kw <1000 <300

SOFC System Modelling - 250 kw Base Case Natural Gas Flue Gas E 5 Natural gas E1 Desulphurisation Prereformer Water for start up Flue Gas E7 E 6 Catalytic Burner Anode recycle E 2 SOFC Anode Cathode E 3 Air Blower Air Case Base Case NG Prereform Stationary Methanol APU application DME APU application Diesel CPO (O2/C = 0.35) El Eff. % Cogen Eff % 55.5 83.6 53.3 84.6 53.0 82.5 40.7 85.4 Energy Flows (kj/s)

Transient Part Load Cycle HIL Test System 1 kw stack P_demand P_gross P_net 600 System efficiency 0.8 500 0.6 Electric power [W] 400 0.4 300 0.2 200 0.0 100 Efficiency [-] 0 0 60 120 Time [s] 180 240 Max. el. eff.: 55% Total load cycle el. eff.: 37 %

Flow sheet of AVL Test Stand

Integrated Hot Box

TOFC Lightweight Hot Box 1.8 kw el Project for US Air Force 2 x 40 cells (12x12 cm 2 ) Projected Weight stack + manifold 5,7 kg Volume stack + manifold 2 liters Operate on de-sulphurized JP-8/synthetic diesel 1.5 kw nominal power over 500 hours 10 start up/shut down cycles Fuel utilization > 80% (nominal power) System efficiency > 30%

SOFC Projects supported by Danish Utilities I) Stack hot box for micro CHP II) 10 kw test and demo facility H. C. Ørsted Power Plant / Copenhagen Flue Gas E 5 Natural gas E1 Desulphurisation Prereformer Water for start up E 6 E 2 SOFC Flue Gas E7 Catalytic Anode recycle Anode Cathode Burner E 3 Air Blower Air

Carbon Formation - Graphite Data 900 800 Deg. c 700 600 500 Carbon Formation Region No Carbon 400 300 200 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 O/C ratio

Methanation of MeOH for SOFC Electrical net efficiency = 53 % Co-gen efficiency = 82 %

Carbon Formation - 250 nm Ni Crystals Haldor Topsøe catalyst Carbon whisker 900 800 Ni crystal 700 Deg. C 600 500 Carbon Formation Region No Carbon Formation 400 300 200 0.5 0.75 1 1.25 1.5 1.75 2 O/C ratio

TOFC / Wärtsilä Collaboration Wärtsilä 5 kw test system with 4 TOFC stacks Wärtsilä 25 kw -prototype with 24 TOFC Stacks 90 300 Voltage [V] and Current [A] 80 70 60 50 40 30 20 10 0 50,0 550,0 1050,0 1550,0 2050,0 2550,0 3050,0 Running Hours Average Stack Voltage Average Stack Current Average Current Density 250 200 150 100 50 0 Current Density [ma/cm 2 ] 2006 20 kwe-prototype 2007-2008 20 50 kwe, NG, methanol, bio gas

24 Stacks for the 20 kw Prototype

Secure Channels to Market Diversification & Consolidation!"## $%

Conclusion New, up-scaled cell and stack manufacturing plant Start-up 2008 Capacity: 150,000 250,000 cells 3,800 standard stacks > 4 MW Supported by EU with 4.8 m EUR Standard production of 12x12 cm 2 stacks 18x18 cm 2 co-flow stacks tested Next generation cells and stacks on track