LINEAR PROGRAMMING AND ITS APPLICATIONS



Similar documents
Comment on the Critique of the paper ERP and Management Accounting Changes of Industrial Enterprises in Serbia *

ADVANTAGES AND LIMITATIONS OF THE DISCOUNTED CASH FLOW TO FIRM VALUATION

Postojeći Mail Account u Outlook Expressu (podešavanje promjena):

DISCRETE MATHEMATICS AND ITS APPLICATIONS IN NETWORK ANALYSIS DISKRETNA MATEMATIKA I NJENE PRIMJENE U MREŽNOJ ANALIZI

CIVIL ENGINEERING PROJECTS REALIZATION MANAGEMENT UDC 725.4(045)=20. Slobodan Mirković

FINANCIAL EFFECTS OF INVENTORY MANAGEMENT IN TRADING COMPANIES - EOQ MODEL UDC :005

BUSINESS RESULTS CHANGE UNDER EFFECTS OF FARM SIZE AND DEGREE OF PRODUCTION SPECIALIZATION. Lj. Bastajić 1

HOW DOES EDUCATION INFLUENCE ENTREPRENEURSHIP ORIENTATION? CASE STUDY OF CROATIA

Lean Product Lifecycle Management Approach

COMPETITIVE MANAGEMENT ACCOUNTING - RESPONSE TO THE CHALLENGES OF STRATEGIC BUSINESS DECISION MAKING UDC

Shortest-path algorithms as a tools for inner transportation optimization

SUSTAINABILITY PERFORMANCE MANAGEMENT SYSTEM OF TOURISM ENTERPRISES UDC : Bojan Krstić, Sonja Jovanović, Vesna Janković Milić

Softverska aplikacija za merenje stope prinosa na kapital sukcesivnim vrednovanjem preduzeća

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Postupak konfiguracije ADSL modema ZTE u Routed PPPoE modu Detaljni opis konfiguracije

Podešavanje klijenata

STUDENT DROPOUT ANALYSIS WITH APPLICATION OF DATA MINING METHODS

Duality in Linear Programming

Grzegorz MICHALSKI 1 UDK: Biblid ,59(2007) Vol. LIX, br. 4, pp Izvorni naučni rad Oktobar 2007.

E-LEARNING: PERCEPTIONS OF STUDENTS AT THE JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

Public Relations Influence on Croatian Media Is There a Difference Between the Opinions of Journalists and Public Relations Professionals?

SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION

Gamification concept: theoretical framework and destination marketing management practice

E-LEARNING IN BUSINESS

METHODOLOGY OF INTRODUCING FLEET MANAGEMENT SYSTEM

Practical Guide to the Simplex Method of Linear Programming

EMPLOYEE TRAINING AND DEVELOPMENT AND THE LEARNING ORGANIZATION UDC Jelena Vemić

INFLUENCE OF BIOLOGICAL, PSYCHO-SOCIAL AND ORGANISATIONAL WORK FACTORS ON OCCUPATIONAL SAFETY MOTIVATION UDC

APPLICATION OF COMPUTERS IN INITIAL TEACHING OF MATHEMATICS

Different Types of Inventory Control in Brazilian Companies

Production management information system in wood processing and furniture manufacture

MANAGEMENT IN CIVIL ENGINEERING AND ITS DEVELOPING TENDS UDC 69.01: (045) Milorad Zlatanović

KEY PSYCHOLOGICAL ISSUES IN THE STUDY OF RELIGION

Uputstvo za povezivanje na IPv6 mrežu

A TRADING COMPANY'S INVENTORY MANAGEMENT MODEL

TYPICAL DIFFICULTIES WITH ENGLISH PREPOSITIONS FOR SERBIAN LEARNERS

PUBLIC ADMINISTRATION MAIN FACTOR IN SUCCESSFUL MANAGEMENT OF COASTAL AREA DEVELOPMENT IN REPUBLIC OF CROATIA

MUTUAL DEPENDANCE OF MANAGEMENT AND QUALITY UDC Ljubiša V. Cvetković

AIESEC stručne prakse. Stručne prakse IT

RFID TECHNOLOGY, PRIVACY AND SECURITY UDC

The effectiveness of physical education of the Military Academy cadets during a 4-year study

STRUCTURAL SAFETY DETERMINATION METHODS UDC =111

Leisure-Time Activities Its Program and Importance in the Institutionalized Protection of Old People

Denial of Service. Denial of Service. A metaphor: Denial-of-Dinner Attack. Denial-of-Dinner Attack 2. Ozalp Babaoglu

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

Uputstva za HTC. Sadržaj : 1. HTC HD HTC Snap HTC Smart HTC Legend HTC Desire HTC Magic 10

A NEW WAY FOR PHYSICAL PROGRESS MONITORING IN HIGH TECH INFRASTRUCTURE CONSTRUCTION

Measures for Improving the Quality of Health Care

Linear Programming. March 14, 2014

SELECTION OF SUPPLY CHAIN MANAGEMENT SOFTWARE PRINCIPLES AND RECOMMENDATIONS UDC 658.7:005]:004. Slavoljub Milovanovic

Linearno programiranje. Linearno programiranje. Linearna optimizacija. Prof. dr. Vlatko Čerić Ekonomski fakultet - Zagreb

Developing Critical Thinking in the English Language classroom: A Lesson Plan

Mathematical finance and linear programming (optimization)

SUCCESSFUL DOCTOR-PATIENT COMMUNICATION AND RAPPORT BUILDING AS THE KEY SKILLS OF MEDICAL PRACTICE

IMPACT OF LEGISLATION ON INFRASTRUCTURE FINANCING BY PUBLIC-PRIVATE PARTNERSHIP CONCEPT UDC :336.13

Linear Programming in Matrix Form

IMPLEMENTATION OF FACEBOOK IN FOREIGN LANGUAGE TEACHING IN HIGHER EDUCATION IMPLEMENTACIJA FACEBOOKA U NASTAVI STRANIH JEZIKA U VISOKOM OBRAZOVANJU

MANAGEMENT OF INVENTORY IN A COMPANY

INLET AND EXHAUST VALVES

How To Understand The Maturity Model For Business Intelligence

Optimization of production on vegetable farm in the Republic of Macedonia

LOCALIZATION AND INTERNATIONALIZATION OF DIGITAL LEARNING RESOURCES

An Analysis of Knowledge Areas in Industrial Engineering and Management Curriculum

GLOBAL STRATEGIC ENVIROMENT AS FACTOR OF ECONOMIC ACTIVITY UDC :004. Ivan Mihailović, Milena Marjanović

Key words , etiquette, guidelines, effective writing, recipient

DATA ACQUISITION METHODS IN LABORATORY AND MEDICAL INFORMATION SYSTEMS UDC :61]:004

GENERALIZED INTEGER PROGRAMMING

The capacity of local governments to improve business environment: Evidence from Serbia *

NEGOTIATION AND POWER

Lean PLM - Information Technology Strategy for Innovative and Sustainable Business Environment

ELABORATION OF KEY CONCEPTS RELATING TO COST AND PROFIT CALCULATION WITH PRACTICAL EXAMPLES UDC Milan Lj. Stamatović, Milan B.

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

p-charts in the Quality Control of the Grading Process in the High Education

INTERDEPENDENCE OF ORGANIZATIONAL CULTURE AND LEADERSHIP STYLES IN LARGE FIRMS

MODEL FOR LEADERSHIP STYLE EVALUATION

LU Factorization Method to Solve Linear Programming Problem

The Linux Small Business Server

FABRIC DRAPING AND COTTON FABRIC STRUCTURE RELATION ANALYSIS

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

TRANSACTIONAL ANALYSIS PSYCHOTHERAPY OF MIXED PERSONALITY DISORDER

Optimization Theory for Large Systems

ANALYSIS OF THE CREDITWORTHINESS OF BANK LOAN APPLICANTS UDC Daniela Feschijan

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

UNIT TWELVE CHARTER PARTIES (I)

SELECTION OF THE MANNER OF MEASURING SIGNIFICANT CHARACTERISTICS OF THE INSURANCE COMPANIES SERVICE QUALITY

Linear Programming. April 12, 2005

Design of e-books: readers expectations in a comparative perspective

DEVELOPMENT OF HUMAN RESOURCES AS STRATEGIC FACTORS OF THE COMPANIES' COMPETITIVE ADVANTAGE UDC Jelena Vemić Đurković

Special Situations in the Simplex Algorithm

4.6 Linear Programming duality

Duality of linear conic problems

Offered to MAN ECN IRL THM IBT Elective. Course Level Course Code Year Semester ECTS Weekly Course Hours

Switching and Finite Automata Theory

Management Science and Business Information Systems

ACTUARIAL ESTIMATION OF TECHNICAL PROVISIONS ADEQUACY IN LIFE INSURANCE COMPANIES

Transcription:

Economic Horizons, January - April 2014, Volume 16, Number 1, 73-75 Faculty of Economics, University of Kragujevac UDC: 33 eissn 2217-9232 www. ekfak.kg.ac.rs Book review UDC: 330.45:519.852(049.32) doi:10.5937/ekonhor1401077j LINEAR PROGRAMMING AND ITS APPLICATIONS Eiselt, H. A., & Sandblom, C.-L. (2007). Berlin Heidelberg: Springer-Verlag, ISBN 978-3-540-73670-7, XI+380 Olivera Jankovic* Faculty of Economics, University of Kragujevac, Kragujevac, Serbia In everyday life, as in many scientific fields, there is often a need for finding an optimal (minimum or maximum) solution to a problem, where certain conditions are met. Due to the simplex method, linear programming is one of the most effective approaches to formulating and solving complex problems of decision making. It is therefore increasingly applied in modern society in the planning of economic development and the control of various activities that are limited in the amount of available resources (labor force, materials, a budget, time, etc.). The book entitled: Linear Programming and its Applications (2007), by H. A. Eiselt and C.-L. Sandblom, presents a unique approach to the problem of linear programming, which aims to place an emphasis on models and applications without omitting mathematical accuracy and correctness. Accordingly, the process of solving a problem is illustrated, from setting the model to analyzing the optimal values. The authors approach, the type and the selection of different applications as well as their limitation to * Correspondence to: O. Jankovic, Faculty of Economics, University of Kragujevac; D. Pucara 3, 34000 Kragujevac, Serbia; e-mail: ojankovic@kg.ac.rs a small number of sub-themes in the field (which is actually one of its advantages) suggest that the book is primarily intended for advanced students and researchers engaged in operations research and their application to economic problems. H. A. Eiselt and C.-L. Sandblom note that the book is the last part of the trilogy. The previous two volumes are Integer Programming and Network Models (2000) and Decision Analysis, Location Models, and Scheduling Problems (2004). Although the order which the books were published in is not entirely clear, all the three volumes are similar in style, emphasize models, applications, formulations/reformulations and provide the numerical examples of the described algorithms. The book begins with the two (A and B) introductory chapters describing the mathematical apparatus necessary for understanding the continuation of the book. Chapter A (pp. 1-30) provides a clear and concise introduction to linear algebra and highlights concepts important for the field of linear programming. Complicated mathematical proofs are excluded in order to maintain conciseness in interpretation, and readers interested in a deeper analysis are referred to the appropriate literature. Chapter B (pp. 31-44)

74 Economic Horizons (2014) 16(1), 73-75 presents a brief account of computational complexity, providing the reader with minimum however quite enough knowledge in this field that a book devoted to optimization should offer. Although readers with little prior knowledge in mathematics are unlikely to fully understand the topic briefly described and not so simple, that was not a goal pursued by the authors. Chapter 1 (pp. 45-66) provides an introduction to the non-classical optimization method known as mathematical programming, which also includes linear programming. The relationship between mathematical programming and modeling is specifically described, for the purpose of presenting an example from real life situations with appropriate variables and parameters using mathematical model. Section 1.5, entitled: Solving the Model and Interpreting the Printout, illustrates the theory described with the specific examples. Chapter 2 (pp. 67-128) contains a good selection of the optimization problems pointing to important skills in modeling, noting the difference between a theoretically optimal and practical solution in optimization. The authors clearly describe the mathematical models of the objective function, a set of constraints and the conditions of non-negativity, which are actually the three essential parts of the linear program. Chapter 3 (pp. 129-166) is entirely devoted to the simplex method for solving linear programming problems. The graphical method is first described in two parts and subsequently the algebraic method is described as well. Wherever appropriate, graphic illustrations enhance the effect of the algebraic results. In Chapter 4 (pp. 167-202), there is a formal description of the theory of duality in the first place, only to be followed, for the ease of understanding, by the exemplified demonstration of the relationship between a primal and a dual problem. Because of the principally rigorous theoretical approach, readers with less prior knowledge in mathematics will have more difficulties to understand this chapter than the previous ones. As the dual problem has its own clear and important economic significance, except for calculating the solution of the primal one, the last part of this chapter is devoted to the economic interpretation of duality. Chapter 5 (pp. 203-224) is an upgrading of Chapter 3 in terms of adding the revised simplex method. It describes the method for introducing the upper bound of constraints and for the generating of the columns of variables when necessary. The chapter contains several examples of the dual-simplex method with a brief and clear explanation. In general, this chapter provides a reader with the main reasons for a possible modification of the simplex method, but does not present enough information necessary for the pursuance of the idea. Chapter 6 (pp. 225-260) focuses on the post-optimal analysis through the formal presentation of the sensitivity of the optimal solution to changes in initial assumptions. Using a graphical analysis, the consequences of the changes in the free parameters, the objective function coefficients, the adding/deleting of the variables or constraints are described, and generally, the answer to the question: What if... is given. The last part explains the economic analysis of optimal solutions with a good numerical example. Chapter 7 (pp. 261-294) describes alternative nonsimplex methods for solving linear programming problems. This part is concise and mainly focused on the interior point method, with a reference to the other methods such as: the traversal method, the external pivoting method, the gravitational method, the bounce and ellipsoid method. The chapter could be expanded with a reference to the relevant literature analyzing the application of these methods in practice. (I also believe it would be good to critically analyze the interior point method, which has increasingly been used in practice in recent decades, and to compare it with the simplex method.) Chapter 8 (pp. 295-324) describes the techniques important for solving the problems that do not fit in the standard model of linear programming. This is a very useful chapter because the reader is referred to the methods of overcoming difficulties in the modeling of the given optimization problem. The method of reformulating a problem in the general form of a linear programming problem is demonstrated (by replacing variables, conditions, and objective functions). Although the chapter covers the basics of the field, readers can expect to come across interesting and useful illustrative examples.

O. Jankovic, Book review: Linear Programming and its Applications 75 Chapter 9 (pp. 325-362), the last one, as a good complement to the rest of the book, gives an introduction to the problem of multi-objective programming. The concept of the vector versus scalar optimization is well explained. It also describes the established methods for solving multi-objective programming, such as: the weighting method, constraint, reference point programming, fuzzy programming, goal programming and bilevel programming. Some of these methods are widely used in economics, which is shown on concrete examples. In their introduction, H. A. Eiselt and C.-L. Sandblom clearly indicate their desire to ensure the longevity of the book by paying more attention to analyzing the essence of the problem and to describing the appropriate models; however, the book lacks the use of a software package for solving optimization problems. Thus, it would be easier for researchers with insufficient experience in the field of linear programming to identify a high potential of the applications of the field in practice. However, since it is obviously impossible to introduce the whole mathematical apparatus used in linear programming in just one book, the authors have rightly focused on what is mathematically the most basic and economically the most important. Readers who study the book carefully will be able to understand the majority of scientific and professional articles in journals dedicated to this topic. Received on 5 th April 2014, after revision, accepted for publication on 17 th April 2014. Olivera Jankovic is a teaching assistant at the Faculty of Economics, University of Kragujevac. She teaches Mathematics in Economics. She is a student of the doctoral studies at the Faculty of Mathematics, University of Belgrade. The main areas of her scientific research are numerical mathematics and optimization.

Ekonomski horizonti, Januar - April 2014, Volumen 16, Sveska 1, 77-79 Ekonomski fakultet Univerziteta u Kragujevcu UDC: 33 ISSN: 1450-863 X www. ekfak.kg.ac.rs Prikaz knjige UDK: 330.45:519.852(049.32) doi:10.5937/ekonhor1401077j LINEAR PROGRAMMING AND ITS APPLICATIONS Eiselt, H. A., & Sandblom, C.-L. (2007). Berlin Heidelberg: Springer-Verlag, ISBN 978-3-540-73670-7, XI+380 Olivera Janković* Ekonomski fakultet Univerziteta u Kragujevcu U svakodnevnom životu, kao i u mnogim naučnim oblastima, često se nameće potreba nalaženja optimalnog (minimalnog ili maksimalnog) rešenja problema pri čemu su zadovoljeni određeni uslovi. Zahvaljujući simpleks metodi, linearno programiranje je jedan od najefikasnijih pristupa formulisanju i rešavanju složenih problema donošenja odluka. Zbog toga se sve više primenjuje u modernom društvu prilikom planiranja ekonomskog razvoja i kontrole raznih aktivnosti koje su ograničene količinom raspoloživih resursa (radnom snagom, sirovinama, budžetom, vremenom i sl.). Knjiga pod naslovom: Linear Programming and its Applications (2007), autora H. A. Eiselt-a i C.- L. Sandblom-a, predstavlja jedinstven pristup problematici linearnog programiranja, čiji je cilj da bez izostavljanja matematičke preciznosti i korektnosti akcenat stavi na modele i aplikacije. Shodno tome, ilustrovan je proces rešavanja problema od postavljanja modela do analize dobijenih optimalnih vrednosti. Pristup autora, vrste i izbor različitih aplikacija, kao i * Korespondencija: O. Janković, Ekonomski fakultet Univerziteta u Kragujevcu, Đ. Pucara 3, 34000 Kragujevac, Srbija; e-mail: ojankovic@kg.ac.rs ograničavanje na manji broj podtema ove oblasti (što je upravo jedna od njenih prednosti) ukazuju na to da je knjiga pre svega namenjena naprednim studentima i istraživačima koji se bave operacionim istraživanjima i njihovom primenom u ekonomskim problemima. H. A. Eiselt i C.-L. Sandblom napominju da je ova knjiga poslednji deo trilogije čija su prethodna dva toma Integer Programming and Network Models (2000) i Decision Analysis, Location Models, and Scheduling Problems (2004). Iako redosled izdavanja ovih knjiga nije u potpunosti jasan, sva tri toma su slična po stilu, naglašavaju modele, aplikacije, formulacije/reformulacije i daju numeričke primere opisanih algoritama. Knjiga počinje sa dva uvodna poglavlja A i B, u kojima je opisan matematički aparat neophodan za razumevanje nastavka knjige. Poglavlje A (1-30 str.) daje jasan i sažet uvod u linearnu algebru i ističe pojmove značajne za oblast linearnog programiranja. Izostavljeni su komplikovaniji matematički dokazi zbog održavanja konciznosti u izlaganju, a čitaoci koji su zainteresovani za dublju analizu su upućeni na odgovarajuću literaturu. Poglavlje B (31-44 str.) objašnjava određivanje složenosti algoritama i vremena rešavanja problema, pružajući čitaocima

78 Ekonomski horizonti (2014) 16(1), 77-79 minimum znanja iz ove oblasti, ali sasvim dovoljno koliko knjiga posvećena optimizaciji treba da ponudi. Čitaoci koji nemaju odgovarajuće matematičko predznanje verovatno neće u potpunosti razumeti ukratko opisanu ne tako jednostavnu problematiku, ali autorima to i nije bio cilj. Poglavlje 1 (45-66 str.) daje uvod u neklasičnu metodu optimizacije poznatu kao matematičko programiranje koje uključuje i linearno programiranje. Specijalno je opisan odnos između matematičkog programiranja i modeliranja, čija je svrha da pomoću odgovarajućih promenljivih veličina i parametara matematičkim modelom predstavi primer iz realne životne situacije. Odeljak 1.5, pod naslovom: Solving the Model and Interpreting the Printout, ilustruje opisanu teoriju na konkretnom primeru. Poglavlje 2 (67-128 str.) sadrži dobar izbor problema optimizacije koji ukazuju na važne veštine prilikom modeliranja navodeći razliku između teorijski optimalnog i praktičnog rešenja pri optimizaciji. Jasno su opisani matematički modeli sa funkcijom cilja, skupom ograničenja i uslovima nenegativnosti koji u stvari i čine tri bitna dela linearnog programa. Poglavlje 3 (129-166 str.) je u potpunosti posvećeno simpleks metodi za rešavanje problema linearnog programiranja. U dva dela je najpre opisana grafička metoda, a zatim i algebarska. Gdegod je prikladno, grafičke ilustracije pojačavaju efekat algebarskih rezultata. U Poglavlju 4 (167-202 str.) je najpre izložen formalan opis teorije dualnosti, a zatim zbog lakšeg razumevanja, na primerima je pokazana veza između primarnog i dualnog problema. Zbog uglavnom strogog teorijskog pristupa, čitaocima sa slabijim matematičkim predznanjem ovo poglavlje će biti teže za razumevanje od prethodnih. Kako dualni problem, osim za izračunavanje rešenja primala, ima i sopstveno jasno i važno ekonomsko značenje, poslednji deo ovog poglavlja je posvećen ekonomskoj interpretaciji dualnosti. Poglavlje 5 (203-224 str.) predstavlja nadogradnju Poglavlja 3 u smislu dodavanja revidirane simpleks metode. Opisuje se način uvođenja gornje granice u ograničenjima i generisanje kolona promenljivih, kada je to potrebno. Poglavlje sadrži i nekoliko primera dual-simpleks metode sa kratkim i jasnim objašnjenjima. U principu, ovo poglavlje pruža čitaocu osnovne razloge moguće modifikacije simpleks metode, ali ne i dovoljno informacija neophodnih za spovođenje te ideje. Poglavlje 6 (225-260 str.) je fokusirano na postoptimalnu analizu kroz formalno izlaganje o osetljivosti optimalnog rešenja na promene polaznih pretpostavki. Primenom grafičke analize opisane su posledice promena slobodnih parametara, koeficijenata funkcije cilja, dodavanje/brisanje promenljivih ili ograničenja i uopšte, dat je odgovor na pitanje: Šta ako...?. U poslednjem delu je na jednom dobrom numeričkom primeru objašnjena ekonomska analiza optimalnog rešenja. Poglavlje 7 (261-294 str.) opisuje neke alternativne nesimpleks metode za rešavanje problema linearnog programiranja. Ovaj deo je sažet i fokusiran uglavnom na metodi unutrašnje tačke (Interior point methods), uz osvrtanje na druge metode kao što su: traversal, external pivoting method, gravitational method, bounce i ellipsoid method. Poglavlje bi moglo da se proširi upućivanjem na relevantnu literaturu u kojoj se analizira primena navedenih metoda u praksi. (Takođe, bilo bi dobro metodu unutrašnje tačke, koja se poslednjih decenija sve češće koristi u praksi, kritički analizirati i uporediti sa simpleks metodom). Poglavlje 8 (295-324 str.) opisuje važne tehnike za rešavanje problema koji se ne uklapaju u standardni model linearnog programiranja. Ovo je veoma korisno poglavlje, jer se čitalac upućuje na načine prevazilaženja teškoća oko modeliranja datog optimizacionog problema. Demonstriran je način preformulisanja datog problema do opšteg oblika problema linearnog programiranja (zamenom promenljivih veličina, uslova i funkcije cilja). Iako Poglavlje pokriva samo osnovu iz ove oblasti, čitaoci mogu očekivati da će naići na zanimljive i korisne ilustrativne primere. Poslednje, Poglavlje 9 (325-362), daje uvod u problematiku višeciljnog programiranja. Koncept vektorske naspram skalarne optimizacije je dobro objašnjen. Takođe su opisane i utvrđene metode za rešavanje višeciljnog programiranja, kao što su: weighting method, constraint, reference point programming, fuzzy programming, goal programming, bilevel programming. Neke od ovih metoda imaju veliku primenu u ekonomiji, što je pokazano na konkretnim primerima. H. A. Eiselt i C.-L. Sandblom, u Uvodu jasno ističu svoju želju da knjizi obezbede dugovečnost, tako što

O. Janković, Prikaz knjige: Linear Programming and its Applications 79 će više pažnje posvetiti analiziranju suštine problema i opisivanju odgovarajućeg modela. Međutim, ono što knjizi nedostaje jeste korišćenje nekog od software paketa za rešavanje optimizacionih problema. Tako bi istraživači koji nemaju dovoljno iskustva u oblasti linearnog programiranja lakše uočili velike mogućnosti primene ove oblasti u praksi. Međutim, pošto je očigledno nemoguće samo u jednoj knjizi uvesti ceo matematički aparat koji se upotrebljava u linearnom programiranju, autori su se, sa pravom, usredsredili na ono što je matematički najosnovnije i praktično najvažnije. Čitaoci koji knjigu pažljivo prouče moći će da razumeju većinu naučnih i stručnih članaka u časopisima na ovu temu. Primljeno 5. aprila 2014, nakon revizije, prihvaćeno za publikovanje 17. aprila 2014. Olivera Janković je asistent na Ekonomskom fakultetu Univerziteta u Kragujevcu, na nastavnom predmetu Matematika u ekonomiji. Student je doktorskih akademskih studija na Matematičkom fakultetu Univerziteta u Beogradu. Glavne oblasti naučnog istraživanja su numerička matematika i optimizacija.