Research on Phase Detection of Liquid Crystal Optical Device



Similar documents
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD

ENGINEERING METROLOGY

Liquid Crystal in Precision Optical Devices

Synthetic Sensing: Proximity / Distance Sensors

Introduction to Optics

Interferometric Measurement of Dispersion in Optical Components

A Guide to Acousto-Optic Modulators

Optical thickness measurement of substrates using a transmitted wavefront test at two wavelengths to average out multiple reflection errors

Introduction to Fourier Transform Infrared Spectrometry

FTIR Instrumentation

Acousto-optic modulator

Microlenses immersed in nematic liquid crystal with electrically. controllable focal length

RAY TRACING UNIFIED FIELD TRACING

Components for Infrared Spectroscopy. Dispersive IR Spectroscopy

Lens refractive index measurement based on fiber point-diffraction longitudinal interferometry

Modern Classical Optics

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

Holography 1 HOLOGRAPHY

Lab 9: The Acousto-Optic Effect

Color holographic 3D display unit with aperture field division

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents

5. Reflection, refraction and polarization

Experiment 5. Lasers and laser mode structure

Interference. Physics 102 Workshop #3. General Instructions

Optical Storage Technology. Optical Disc Storage

Antenna Glossary Before we talk about specific antennas, there are a few common terms that must be defined and explained:

Antenna Measurement 1 Antenna Ranges antenna range

Today. next two weeks

Diffraction and Young s Single Slit Experiment

Ultrasonic Wave Propagation Review

Optical Communications

Tutorial Solutions. then the Amplitude transmission of a thin hologram formed from this distribution is

Application Report: Running µshape TM on a VF-20 Interferometer

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy

Crystal Optics of Visible Light

REPORT DOCUMENTATION PAGE

Optical Design Tools for Backlight Displays

3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY

Diffraction of a Circular Aperture

Introduction to polarization of light

Fraunhofer Diffraction

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, , 1 April 1998)

Spectroscopy and Regions of the Spectrum

Achieving high focusing power for a largeaperture liquid crystal lens with novel hole-andring

Wir schaffen Wissen heute für morgen

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

Interfacing To Alphanumeric Displays

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Using Cellophane Sheet to Encrypt Information on Digital Holograms

Master Degree Program

Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows

Opto-Mechanical I/F for ANSYS

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red

One example: Michelson interferometer

Masters Thesis Adaptive speckle interferometry

DETECTION OF SUBSURFACE DAMAGE IN OPTICAL TRANSPARENT MATERIALSS USING SHORT COHERENCE TOMOGRAPHY. Rainer Boerret, Dominik Wiedemann, Andreas Kelm

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Polarization of Light

Physics 441/2: Transmission Electron Microscope

GPR Polarization Simulation with 3D HO FDTD

A Simple Fiber Optic displacement Sensor for Measurement of Light Intensity with the Displacement

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS

Practical Application of Industrial Fiber Optic Sensing Systems

Plate waves in phononic crystals slabs

Measuring index of refraction

CHAPTER 4. Electromagnetic Spectrum

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

Why Touch Technology?

Polarization Tutorial Polarizing Beamsplitter Cubes

DESIGNER POLARIZATION

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Automated Optical Inspection is one of many manufacturing test methods common in the assembly of printed circuit boards. This list includes:

GRID AND PRISM SPECTROMETERS

Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)

Adaptive Optics Phoropters

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

1 Basic Optics (1.2) Since. ε 0 = C 2 N 1 m 2 and μ 0 = 4π 10 7 Ns 2 C 2 (1.3) Krishna Thyagarajan and Ajoy Ghatak. 1.

Research on the UHF RFID Channel Coding Technology based on Simulink

A NEW LOOK AT RISLEY PRISMS. By Craig Schwarze Senior Systems Engineer OPTRA Inc.

4.3.5: High Temperature Test 3

FXA UNIT G485 Module Ultrasound. Candidates should be able to :

EE302 Lesson 14: Antennas

Optical System Design

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Millijoules high master-slave pulse ratio 532 nm picosecond laser

Holographic data storage at 2+ Tbit/in 2

DESIGN AND EVALUATION OF PROBE WITH THREE DEGREE- OF-FREEDOM FOR NON-DESTRUCTIVE TEST USING THREE- DIMENSIONAL FINITE ELEMENT METHOD

The Role of Electric Polarization in Nonlinear optics

Antennas. Antennas are transducers that transfer electromagnetic energy between a transmission line and free space. Electromagnetic Wave

Applications in EMC testing. Outline. Antennas for EMC Testing. Terminology

Transcription:

Journal of Applied Mathematics and Physics, 04,, 099-04 Published Online November 04 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/0.436/jamp.04. Research on Phase Detection of Liquid Crystal Optical Device Mingliang Shi, Ruofu Yang, Chunping Yang, Mingwu Ao, Hongzhou Dong School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, China Email: shimingliang083@6.com Received July 04 Abstract The technology for phase detection of liquid crystal optical device is a difficult research in current domestic and overseas. However, for the existing liquid crystal optical device, aiming at the poor anti-vibration capability and poor versatile of phase detection, the complexity of phase retrieval algorithm, we propose a new phase measurement principle and experimental methods of liquid crystal optical device. It is a phase measurement method based on the combination of phaseshifting interferometer and phase conjugation technology. The deflection characteristics of the liquid crystal device means the device can implement phase modulation to only one direction of polarized light while is completely transparent to orthogonal polarized light. We put forward the phase shift of the orthogonal polarization phase shift interferometer method, using phase shifting interference as well as the combination of phase conjugate means to achieve its phase measurement. So we can retrieves devices modulation phase simply and efficiently combines with phaseshifting interferometer technology. Keywords Liquid Crystal Optical Device, Modulation Phase Detection, Orthogonal Phase Shifting, Conjugate Interference, Phase Retrieval Algorithm. Introduction Fast development of the liquid crystal optical device makes miniature, inexpensive adaptive optics, space optical communication systems become possible. Such optics for accurate quantification of the incident wave front phase modulation capability relates to the ability to realize the above-mentioned applications and is very hard to be measured and quantified accurately restricted by measurement method. There are many detection methods for modulation phase of liquid crystal retarders []-[4]. For Liquid Crystal Spatial Light Modulator and LC-lens optical devices, double-slit interference method and Mach-Zehnder interferometer measurements have some limitations [5]-[8]. And to require higher stability of the detector and put higher requirements on the processing of the optical element [9] [0]. Some improved measurements such as the common optical path radial shearing interferometry, conjugate phase-shifting interferometry [] [], or their phase retrieval algorithm is complex, iteration is slow, or can not accurately assess the Wave front phase of the exit end of the liquid crystal, and lost How to cite this paper: Shi, M.L., Yang, R.F., Yang, C.P., Ao, M.W. and Dong, H.Z. (04) Research on Phase Detection of Liquid Crystal Optical Device. Journal of Applied Mathematics and Physics,, 099-04. http://dx.doi.org/0.436/jamp.04.

high-frequency phase seriously. We reference the methods for liquid crystal phase grating in 996 Raytheon company by L. J. Friedman and others [3]. Using the polarization properties of the liquid crystal optical device making signal light and reference light improvement of the common optical path, which enhances the next earthquake resistance and reduce the sensitivity of the long optical path of the airflow, and thus realize the system structure of quasi-optical path.. The Phase Detection Principle Based on Orthogonal Phase Shifting Conjugated Technology for Liquid Crystal Optical Device L. J. Friedman and others put forward the modulation phase detection optical path of liquid crystal grating based on Phase-imaging shown in Figure. Because of the interference structure of the method used to make the signal light and the reference light is not common path, so poor vibration resistance, especially in the long optical path. In this paper, a reference to this method and has been improved, so that it has better anti-interference ability. The improved structure was shown in Figure. The detection system consists of laser, a laser beam expander mirror, the half-wave plate 3, the polarization splitting prism 4, a piezoelectric ceramic reflector 5, /4 wave plate 6,, a mirror 8, a transmissive liquid crystal device 9, the conjugate optical system 0, the analyzer, plane array detectors and LCD panel drive 3 components. The modulation phase detection system based on transmissive liquid crystal optical device works as follows. The polarization direction of the linearly polarized laser light emitted by the laser is controlled by the half-wave plate 3, through the polarization splitting prism 4, then Split into two beams. The transmitted light P through the /4 wave plate 6 (x-axis and the fast axis make the angle of 45 ) turn into the left-handed circularly polarized light, which through the mirror 8 reflected back to /4 wave plate 6 and becomes s, then s polarized light passes through the polarization splitting prism 4, after again reflected off the beam path which is a reference arm; Another route polarization reflected by the polarization splitting prism 4, through the /4 wave plate (x -axis and the fast axis make angle of 45 ), then pass a piezoelectric ceramic reflector 5, which is reflected back and through the /4 wave plate then turn into p, then p polarized light is transmitted through the polarization splitting prism 4, this road is the signal beam arm. Submicron movement was accurately generated by the piezoelectric ceramic reflector 5 from the signal beam arm, and which generated orthogonal linear polarization phase shift. For transmissive liquid crystal device 9, make the liquid crystal molecular in long axis direction or the direction of polarization parallel with s polarized. When the LCD panel drive 3 make voltage is applied to a transmissive liquid crystal device 9, the rotation would be happed in such a case which the liquid crystal molecular long axis direction of electric field. so that the incident light s was introduced an additional phase shift,but the incident light p not. There by achieving a different modulation of the two orthogonal polarizations of light. Collecting the interference fringe by the plane array detectors, and use phase-shifting interferometry technology recovery of the liquid crystal modulation phase. The modulation phase detection system based on transmissive liquid crystal optical device shown in Figure 3, We can see the detection system consists of the laser, a laser beam expander mirror, the half-wave plate 3, the polarization splitting prism 4, a piezoelectric ceramic reflector 5, /4 wave plate 6, /4 wave plate, a mirror 8, the LCD panel driver 9, the reflective liquid crystal device 0, conjugate optical system, an analyzer, plane array detectors 3 and the beam splitter 4. The modulation phase detection system based on reflective liquid crystal optical device compares with a phase modulation and transmission type liquid crystal optical, we could see that orthogonal phase shifting conjugated technology working principle of the optical path in the front part they were similar. Except that in front of the reflective liquid crystal device 0, we put into the beam splitter 4. Using the conjugate optical system, a reflective liquid crystal device 0 in exit end with the plane array detectors 3 constitute a conjugate image plane, to improve the interference pattern extraction, beam splitter 4 incident plane introduced AR coated on surface, sub-transmission surface film introduced beam-splitting film, and the antireflection coating request the transmittance deviation of s polarized light was smaller than p polarized light. 3. Research on Modulation Phase Recovery Algorithm After the plane array detector obtained the interference fringes, the process is as follows. Modulation phase recovery algorithm consists of three parts: a liquid crystal layer wrapped phase modulation recovery algo- 00

Farfield CCD f E A D H I B F G C PZT-mounted Mirror Reference Transform Lens Beam Combiner Image Lens Image CCD Input Beam λ=.06μm Liquid Crystal Device Beam Splitter Fixed Mirror Liquid Crystal Film -D Electrodes Ground Plane Figure. The modulation phase detection optical path of liquid crystal grating based on Mach-Zehnder interferometer. 8 6 3 5 4 3 9 0 Z Y X Figure. Modulation phase detection system based on transmissive liquid crystal optical device. rithm, unwrapping algorithm and system aberration calibration. Considered in the case of a simplified model of the detection system (for simplicity, only the transmission type liquid crystal optical device is considered to have a phase modulated wave front, and the rest of the detection system is an ideal lens, prism, planar surface), using a polarization optical matrix derive unwrapping algorithm. A Let s assume the Jones vector of the incident light beam was E = B,There has a phase modulation for s 0

6 3 5 4 3 9 8 0 Figure 3. Modulation phase detection system based on reflective liquid crystal optical device. polarized light, then p polarized light without a phase modulation. For s polarized light, After transmitted by a plurality of optical transmission elements, the Jones vector of the plane array detectors was becoming A E = B,and: E = J E () 8 i i= J,, J was the Jones matrix, which respectively represent from the sample analyzer into the half-wave plate, s polarized light through the transmission path of the optical system. ϕ was the liquid crystal phase modulation, θ was the direction of polarization of the polarizer and the angle between the X axis coordinate system. After deduced: Ai sinθ iϕ E = J8 ie = e () i= A sin θ As the same to ppolarized light, after deduced: Bi cos θ π( ) i E λ = Bi e sinθ (3) So, the amplitude distribution on the plane array detectors: π( ) i sin e i ϕ λ i A θ + Bcos θe E = E + E = π( ) (4) i sin e iϕ A B sin e λ θ + θ Commonly, to Simple, we provided with the polarization direction 45 to the X axis, so we could obtain the distribution of interference intensity was: 4π I = E = ( A + B ) + AB cos ϕ (5) 4 λ Assuming the amount of movement, driving the piezoelectric mirror reflecting were 0, λ 8, λ 4, 3λ 8, so we obtain the interference light intensity, then calculated by four interferograms, which we can derive wrapped phase as: 4 arctan I ϕ = I (6) I I3 For different liquid crystal device, like a liquid crystal spatial light modulator, a liquid crystal grating, the Liquid crystal phase retarder, etc., their phase modulation s amplitude does not exceed π, so the phase was 0

calculated wrapped phase is the phase detection. The liquid crystal lens and a new liquid crystal device such as a liquid crystal optical wedge, which may exceed π, they need for unwrapping the phase [4]. 4. Research Results and Analysis In summary, we proposes orthogonal phase shifting conjugated technology for testing the phase modulation of liquid crystal optical device, as phase modulation of the devices is effective for linearly polarized light in one direction and is ineffective in orthogonal direction. We make phase shifting method and orthogonal polarize the incident beam into phase reference arm and signal arm as polarized light in common optical path in order to testing the phase modulation of liquid crystal optical device. The detection system has a great anti-vibration capability and as simple and efficient as the phase retrievalalgorithm as only a short part of the optical path based on the above measuring principle is non-coaxial, the rest are completely coaxial. Meanwhile, the conjugate optical system realizes the diffraction-type liquid crystal device modulation phase detection. 5. Conclusion We proposes orthogonal phase shifting conjugated technology for testing the phase modulation of liquid crystal optical device and realizes system structure of the optical path, deduces the basic process of the phase detection mathematically, demonstrates the feasibility and effectiveness of this method. The basic principles involved is the phase-shifting interferometer combining with phase conjugation technology, orthogonal polarize the incident beam into phase reference arm and signal arm as polarized light in common optical path in order to testing the phase modulation of liquid crystal optical device. Combined with the liquid crystal phase-shifting interferometer technology, so it easily achieve the recovery of modulation phase. It has great difference with the original non-common optical path detection of optical devices and the complex phase retrieval algorithm. As far as we know, there are no reports at home and abroad. References [] Oilman, S.E., Baur, T.G., Gallagher, D.J., Optics, M., Longmont, C. and Shankar, N.K. (989) Properties of Tunable Nematic Liquid Crystal Retarders. SPIE, 66, 46-4. [] Bai, L.L., Li, D. and Huang, Z.Q. (0) Liquid Crystal Variable Retarders. Solid State Phenomena, 8-8, 93-300. [3] Hwang, S.J. (005) Precise Optical Retardation Measurement of Nematic Liquid Crystal Display Using the Phase- Sensitive Technique. IEEE Journal of Display Technology,, -8. [4] Zhang, Y., Zhao, H.J., Zhou, P.W. and Zhao, H.B. (009) Photoelectric Characteristics of Liquid Crystal Variable Retarder. Foreign Electronic Measurement Technology, 8, -0. [5] Konforti, N., Marom, E. and Wu, S.-T. (988) Phase Only Modulation with Twisted Nematie Liquid Crystal Spatial Light Modulation. Optics Letters, 3, 5-54. http://dx.doi.org/0.364/ol.3.0005 [6] Li, Y., Wang, H. and Jin, H.Z. (005) A New Approach for Making Kinoform from Hologram. Laser & Infrared, 35, 65-6. [] Chen, H.X., Li, D.H. and Chen, Z.P. (000) Measuring Phase Modulation Characteristic of LC-SLM by Using Phase- Shift Interference. SPIE, 43, 384-386. [8] Zhang, Y., Wu, L.Y. and Zhang, J. (006) Study on the Phase Modulation Characteristics of Liquid Crystal Spatial Light Modulator. Journal of Physics: Conference Series, 48, 90-94. [9] Zhao, X.F., Li, D.H. and Chen, Z.P. (00) Measuring Phase Modulation Characteristics of Liquid Crystal Spatial Modulators by Using Cyclic Radial Shearing Interference. Journal of Sichuan University, 39, 6-65. [0] Mcmanamon, P.F., Dorschner, T.A., Corkum, D.L., Friedman, L.J., Hobbs, D.S., Holz, M., Liberman, S., Nguyen, H.Q., Resler, D.P., Sharp, R.C. and Watson, E.A. (996) Optical Phased Array Technology. Proceeding of IEEE, 84, 68-98. [] Zheng, C.Y. and Wu, J. (009) Measuring the Wavefront Distortion of a Phased-Array Laser Radar by Using a Real- Time Optoelectronic Measurement System. Proceeding of SPIE, 5, 5T--5T-8. [] Zheng, C.Y., Yang, R.F., Xu, L., Kong, L.J., Ao, M.W., Yang, P., Huang, Z.Q. and Wu, J. (0) Wave-Front Measurement Approach of Liquid-Crystal Blazed Gratings. Chinese Journal of Lasers, 38, 8-86. [3] Friedman, L.J., Hobbs, D.S., Lieberman, S., Corkum, D.L., Nguyen, H.Q., Resler, D.P., Sharp, R.C. and Dorschner, 03

T.A. (996) A Spatially Resolved Phase Imaging of a Programmable Liquid-Crystal Grating. Applied Optics, 35, 636-640. http://dx.doi.org/0.364/ao.35.00636 [4] Zhang, Z.H., Wang, H.Y., Liu, Z.Q., Huang, M., Liu, F.F., Yu, M.J. and Zhao, B.Q. (0) Phase Unwrapping Algorithms Based on Fast Fourier Transform. Laser & Optoelectronics Progress, 49, 6-68. 04