Investigation 2- ENZYME ACTIVITY BACKGROUND catalase Learning Objectives



Similar documents
Enzyme Action: Testing Catalase Activity

How do abiotic or biotic factors influence the rates of enzymatic reactions?

ENZYME ACTION: TESTING CATALASE ACTIVITY

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity 50 Points

Enzyme Action: Testing Catalase Activity

What happens to the food we eat? It gets broken down!

Name Date Period. Keystone Review Enzymes

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral

Laboratory 5: Properties of Enzymes

Enzyme Activity Measuring the Effect of Enzyme Concentration

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2

LAB TOPIC 4: ENZYMES. Enzyme catalyzed reactions can be expressed in the following way:

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Sample Liver Enzyme Lab

Honors 227 Fall 2007 Laboratory with Ms. Clark. Enzymes, Reactions, Metabolism and Homeostasis

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

2(H 2 O 2 ) catalase 2H 2 O + O 2

: Biochemistry of macromolecules and metabolic pathways

Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes

THE ACTIVITY OF LACTASE

Running Head: ACTION OF CATALASE IN DIFFERENT TISSUES 1. Action of Catalase in Different Tissues. San Nguyen. Biol 1730.

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

Figure 5. Energy of activation with and without an enzyme.

10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)

Enzyme Lab. DEFINITIONS: 1. Enzyme: 2. Catalase: 3. Catalyze: 4. Hydrolysis: 5. Monomer: 6. Digestion: BACKGROUND INFORMATION

Factors Affecting Enzyme Activity

Catalytic Activity of Enzymes

This laboratory explores the affects ph has on a reaction rate. The reaction

Biology 3A Laboratory: Enzyme Function

Experiment 10 Enzymes

Working With Enzymes. a world of learning. Introduction. How Enzymes Work. Types and Sources of Enzymes

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

1. The diagram below represents a biological process

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

Enzymes: Practice Questions #1

Enzymes Lab Pre-Lab Exercise

Chemical reaction (slow): Enzyme-catalyzed reaction (much faster):

LAB 3: DIGESTION OF ORGANIC MACROMOLECULES

Enzymes. Chapter Enzymes and catalysts. Vital mistake. What is an enzyme?

Catalase Enzyme Lab. Background information

Enzymes: Amylase Activity in Starch-degrading Soil Isolates

MULTIPLE CHOICE QUESTIONS

Chapter 8: Energy and Metabolism

Chapter 8: An Introduction to Metabolism

Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch

Chapter 2. The Chemistry of Life Worksheets

Activity Sheets Enzymes and Their Functions

How to write a formal lab report correctly. This is based off a lab done in AP biology and all examples are taken from student lab write-ups.

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.

Biology for Science Majors

Key Questions. What happens to chemical bonds during chemical reactions?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

CHAPTER 4: Enzyme Structure ENZYMES

1. Enzyme Function

Chemical reactions allow living things to grow, develop, reproduce, and adapt.

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

The Empirical Formula of a Compound

Effect of temperature and ph on the enzymatic activity of salivary amylase

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Class Copy! Class Copy! The process of photosynthesis can be expressed by the following word equation and chemical equation.

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

Unit 5 Photosynthesis and Cellular Respiration

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

catalase 2H 2 O 2 (l) ----> 2H 2 O (l) + O 2 (g)

The purpose of this lab is to investigate the impact of temperature, substrate concentration,

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

ENZYME KINETICS ENZYME-SUBSTRATE PRODUCTS

Enzymes and Metabolic Pathways

Vitamin C Content of Fruit Juice

Factors Affecting Hydrogen Peroxidase Activity

Energy Production In A Cell (Chapter 25 Metabolism)

Chemistry 20 Chapters 15 Enzymes

Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry

TITRATION OF VITAMIN C

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

Lab 3 Organic Molecules of Biological Importance

Review and apply Investigation 5. Let s review Pages

Cellular Respiration: Practice Questions #1

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Cornell Institute for Biology Teachers

Name: Hour: Elements & Macromolecules in Organisms

reaction. An ordinary catalyst may be used for several different chemical reactions, but an enzyme only works for one specific reaction.

Diffusion, Osmosis, and Membrane Transport

Summary of Metabolism. Mechanism of Enzyme Action

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

ANALYSIS OF VITAMIN C

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

6 Characterization of Casein and Bovine Serum Albumin

Chemical Basis of Life Module A Anchor 2

8/20/2012 H C OH H R. Proteins

BCOR 011 Exam 2, 2004

1. Explain the difference between fermentation and cellular respiration.

Transcription:

Investigation 2-13 ENZYME ACTIVITY How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions in biological systems by lowering the activation energy, the energy needed for molecules to begin reacting with each other. Enzymes do this by forming an enzyme-substrate complex that reduces energy required for the specific reaction to occur. Enzymes have specific shapes and structures that determine their functions. The enzyme s active site is very selective, allowing only certain substances to bind. If the shape of an enzyme is changed in any way, or the protein denatured, then the binding site also changes, thus disrupting enzymatic functions. Enzymes are fundamental to the survival of any living system and are organized into a number of groups depending on their specific activities. Two common groups are catabolic enzymes ( cata or kata- from the Greek to break down ) for instance, amylase breaks complex starches into simple sugars and anabolic enzymes ( a- or an- from the Greek to build up ). (You may know this second word already from stories about athletes who have been caught using anabolic steroids to build muscle.) Catalytic enzymes, called proteases, break down proteins and are found in many organisms; one example is bromelain, which comes from pineapple and can break down gelatin. Bromelain often is an ingredient in commercial meat marinades. Papain is an enzyme that comes from papaya and is used in some teeth whiteners to break down the bacterial film on teeth. People who are lactose intolerant cannot digest milk sugar (lactose); however, they can take supplements containing lactase, the enzyme they are missing. All of these enzymes hydrolyze large, complex molecules into their simpler components; bromelain and papain break proteins down to amino acids, while lactase breaks lactose down to simpler sugars. Anabolic enzymes are equally vital to all living systems. One example is ATP synthase, the enzyme that stores cellular energy in ATP by combining ADP and phosphate. Another example is rubisco, an enzyme involved in the anabolic reactions of building sugar molecules in the Calvin cycle of photosynthesis. To begin this investigation, you will focus on the enzyme catalase obtained from beef liver extract, one of numerous sources of this enzyme. Catalase is one of several enzymes that break down peroxide, a toxic metabolic waste product of aerobic respiration. Using catalase, you will develop essential skills to examine your own questions about enzyme function. Later, you will have an opportunity to select an enzyme, research its properties and mode of reaction, and then design an experiment to explore its function. The investigation also provides an opportunity for you to apply and review concepts you have studied previously, including the levels of protein structure, energy transfer, abiotic and biotic influences on molecular structure, entropy and enthalpy, and the role of enzymes in maintaining homeostasis. Learning Objectives To understand the relationship between enzyme structure and function To make some generalizations about enzymes by studying just one enzyme in particular To determine which factors can change the rate of an enzyme reaction To determine which factors that affect enzyme activity could be biologically important 1

General Safety Precautions Follow general laboratory safety procedures. Wear proper footwear, safety goggles or glasses, a laboratory coat, and gloves. Use proper titration techniques, and use pipettes, or syringes. Dispose of any broken glass in the proper container. Be particularly cautious when using sulfuric acid to denature your enzyme! Dispose of all chemicals at the direction of your teacher. When you develop your individual investigations you must always consider the toxicity of materials used. Key Vocabulary Baseline is a universal term for most chemical reactions. In this investigation the term is used to establish a standard for a reaction. Thus, when manipulating components of a reaction (in this case, substrate or enzyme), you have a reference to help understand what occurred in the reaction. The baseline may vary with different scenarios pertinent to the design of the experiment, such as altering the environment in which the reaction occurs. In this scenario, different conditions can be compared, and the effects of changing an environmental variable (e.g., ph) can be determined. Rate of reaction can be determined with a timed decomposition. At various time intervals the reaction is halted and the amount of substrate remaining is determined by a titration. When you design your own experiment, you can compare the change in a reaction, you can infer increase, decrease, or no change in the rate; this inference is usually called the relative rate of the reaction. THE INVESTIGATIONS Getting Started First, complete this Pearson Lab Bench activity online http://www.phschool.com/science/biology_place/labbench/lab2/intro.html And Watch this Video http://www.bozemanscience.com/science-videos/2012/3/19/ap-biology-lab-2- enzyme-catalysis.html Part 1: Developing a Method for Measuring Catalase Activity and Determining a Baseline Peroxide (such as hydrogen peroxide) is a toxic byproduct of aerobic metabolism. Catalase is an enzyme that breaks down these peroxides. It is produced by most cells in their peroxisomes. The general reaction can be depicted as follows: Enzyme + Substrate --> Enzyme-Substrate Complex --> Enzyme + Product(s) + ΔG For this investigation the specific reaction is as follows: Catalase + Hydrogen Peroxide --> Complex --> Catalase + Water + Oxygen 2H 2 O 2 2H 2 O + O 2 (gas) Notice that the catalase is present at the start and end of the reaction. Like all catalysts, enzymes are not consumed by the reactions. To determine the rate of an enzymatic reaction, you must measure a change in the amount of at least one specific substrate or product over time. In decomposition reaction of peroxide by catalase (as noted in the above formula), the easiest molecule to measure would probably be oxygen, a final product. This could be done by measuring the actual volume of oxygen gas released or by using an indicator. In this experiment, the amount of hydrogen peroxide (substrate) left after the reaction is stopped not converted to product- can be determined by titrating with potassium permanganate (KMnO 4 ). 2

General Procedure In this experiment the disappearance of the substrate, H 2 O 2, is measured as follows: 1. A purified catalase extract is mixed with substrate (H 2 O 2 ) in a beaker. The enzyme catalyzes the conversion of H 2 O 2 to H 2 O and O 2 (gas). 2. Before all the H 2 O 2 is converted to H 2 O and O 2, the reaction is stopped by adding sulfuric acid (H 2 SO 4 ). The sulfuric acid lowers the ph, denatures the enzyme, and thereby stops the enzyme's catalytic activity. 3. After the reaction is stopped, the amount of substrate (H 2 O 2 ) remaining in the beaker is measured. To measure this quantity, potassium permanganate is used. Potassium permanganate (KMnO 4 ), in the presence of H 2 O 2 and H 2 SO 4 reacts as follows: 5 H 2 O 2 + 2 KMnO 4 + 3 H 2 SO 4 --------------> K 2 SO 4 + 2 MnSO 4 + 8 H 2 O + 5 O 2 Note that H 2 O 2 is a reactant for this reaction. Once all the H 2 O 2 has reacted, any more KMnO 4 added will be in excess and will not be decomposed. The addition of excess KMnO 4 causes the solution to have a permanent pink or brown color. Therefore, the amount of H 2 O 2 remaining is determined by adding KMnO 4, until the whole mixture stays a faint pink or brown, permanently. Add no more KMnO 4 after this point. The setup: 3

The Baseline Assay To determine the amount of H 2 O 2 initially present in a 1.5% solution, one needs to perform all the steps of the procedure without adding catalase to the reaction mixture. This amount is known as the baseline and is an index of the initial concentration of H 2 O 2 in solution. In any series of experiments, a baseline should be established first. Procedure for Establishing Baseline 1. Put 10 ml of 1.5% H 2 O 2 into a clean beaker. 2. Add 1 ml of H 2 O (instead of enzyme solution). 3. Add 10 ml of H 2 SO 4 (1.0 M) Use Extreme care in Handling Acids. 4. Mix well by swirling. 5.Use a new syringe to remove a 5 ml sample of this mixture. Place this 5 ml sample in another beaker for titration, and assay for the amount of H 2 O 2 as follows: Place the beaker containing the sample over white paper. Use a burette to add potassium permanganate a drop at a time to the solution until a persistent pink or brown color is obtained. Remember to gently swirl the solution after adding each drop. Record your data below. Baseline calculations Final Reading of burette ml Initial reading of burette ml Baseline (Final -Initial) ml KMnO 4 Part 2: An Enzyme-catalyzed Rate of H 2 O 2 Decomposition Background: Having done some initial investigations on the action of catalase, you now need to run a time-course determination which will give you a snapshot view of how the reaction proceeds over time. You are going to set up a series of cups, in each of which you will run the same procedure. The only difference will be the amount of time you allow the H 2 O 2 /catalase reaction to run. You will stop the reaction by adding H 2 SO 4. When you have finished timing and stopping all the reactions, you will run a titration to determine how much H 2 O 2 remains. You will run your Time Course assays at the same time. This is a lot of work, so you need to know what you are doing and be organized! It is possible to get all of this done, but you must work quickly and efficiently as a team! 4

Procedure: 1. Label 7 clean cups as follows: 10 seconds, 30 seconds, 60 seconds, 90 seconds, 120 seconds, 180 seconds, 360 seconds. 2. Fill a beaker with approximately 80 ml of H 2 SO 4. Be careful with H 2 SO 4! If you spill it on your skin, flush with LOTS of water immediately! (This is a dilute sulfuric acid, but it will still burn if you don t get it off.) Get a 10 ml syringe and reserve it for sulfuric acid. (One group member should be in charge of sulfuric acid.) 3. Get another beaker and put approximately 10 ml of catalase into it. Take it back to your desk and keep it on ice! (This is very important catalase disintegrates quickly.) Get a 1 ml syringe and reserve it for catalase. 4. Get approximately 80 ml of H 2 O 2 in a plastic cup, and then put 10mL in each of the labeled plastic cups. 5. Get a stopwatch and figure out how to use it! 6. Put 1 ml of catalase in the 10 second cup. Swirl gently and constantly for 10 seconds. At 10 seconds, add 10 ml of H 2 SO 4, swirl to mix ( alphabet time ), and set the cup aside. 7. Put 1 ml of catalase in the 30 second cup. Swirl gently for 30 seconds. At the end of 30 seconds, add 10 ml of H 2 SO 4, swirl to mix and set the cup aside. 8. Repeat #7 for each of the remaining cups, varying the amount of time at which you stop the reaction with H 2 SO 4. When you have completed the reaction in each of the cups, remove a 5 ml sample and determine the amount of H 2 O 2 present by running a titration Titration: To determine how much hydrogen peroxide (substrate) has been broken down by catalase at varying times, measure the amount of peroxide remaining in each sample. To do so, slowly add KMnO 4, which is purple, to the sample. The peroxide in the sample causes the KMnO 4 to lose color when the solution is mixed thoroughly. When all the peroxide has reacted with KMnO 4, any additional KMnO 4 will remain light brown or pinkish even after you swirl the mixture. This is the endpoint. Record the amount of KMnO 4 you have used. (The more KMnO 4 you use, the more peroxide is left in the sample.) Note: If you overshoot the endpoint, remove another 5 ml sample and start over again! Do not discard any of your solutions until your lab is over! You may need a do-over. 9. As you determine each value, enter it in Table 2.1. 10. Graph the Amount of H 2 O 2 Decomposed by Catalase Over Time. Identify it as Graph 2.1. Don t forget that you need to title your graph and label your axes appropriately. You can download an Excel version on the website. 11. Complete the Analysis of Results. Attach your answers. 12. Be prepared to discuss your results with the class tomorrow (and maybe take a quiz????) 5

Table 2.1 Time-course Determination of Catalase Activity A. Baseline time(sec) 10 30 60 90 120 180 360 B. Initial Reading KMnO 4 (ml) C. Final Reading KMnO 4 (ml) D. Amount of KMnO 4 Used (difference between B and C) E. Proportional Amount of H 2 O 2 Used A minus D Record the baseline value obtained in Exercise 2B in all boxes on line A, above. *Remember that the baseline tells how much H2O2 was in the initial 5-mL sample. The difference between the initial and final readings tells how much H2O2 was left after the enzyme-catalyzed reaction. The shorter the reaction time, the more H2O2 remained and therefore the more KMnO4 was used in titrating. Analysis of Results 1. Consider the line you have drawn on Graph 2.1. What does this line represent? 2. What does Graph 2.1 tell you about the rate of the reaction over time? We can calculate the rate of a reaction by measuring, over time, either the disappearance of substrate or the appearance of product. Reaction rate = E 2 E 1 t 2 t 1 3. Using the formula above for rate ( y/ x), determine the initial rate of the reaction and rates between each of the time points in your procedure and record them in Table 2.2. Show your math below: Table 2.2 Rate Determination Time Intervals (sec) Rate (ml/sec) 0 10 10 30 30-60 60-90 90-120 120-180 180-360 6

4. What is meant by V max in an enzymatic reaction? Mark it on your graph. 5. When is the rate the highest? Why is it highest here? 6. When is the rate the lowest? Why is it lowest here? 7. What was the inhibiting effect of sulfuric acid on this reaction? What did the sulfuric acid do to the enzyme? 8. What was the purpose of establishing a baseline? 9. Why, when establishing the baseline, are you asked to add 1 ml of water? Why add 10 ml of sulfuric acid to your peroxide samples if there was no catalase to denature? Please explain! 10. What would lowering the temperature in this reaction do to the rate of enzyme activity? Designing and Conducting Your Investigation You now have the basic information and tools needed to explore enzymes in more depth on your own. In this part of the lab, you will do just that. You will have the chance to develop and test your own hypotheses about enzyme activity. To help you get started, read the following questions, and write your answers in your laboratory notebook. In the previous lab activity, was the limiting factor of your baseline reaction the enzyme or the substrate? How could you modify the procedure you learned to answer this question? What are three or four factors that vary in the environment in which organisms live? Which of those factors do you think could affect enzyme activity? How would you modify your basic assay to test your hypothesis? Design and conduct an experiment to investigate an answer(s) to one of the questions above or another question that might have been raised as you conducted Procedures 1 and 2. Remember, the primary objective of the investigation is to explore how biotic and abiotic factors influence the rate of enzymatic reactions. For example, you might test the effect on reaction rate of varying one of the following: ph, salinity, temperature, or enzyme concentration. *Submit your proposal to your teacher via email, by (date). Include materials needed (and approximate amounts) and procedures. Analyzing Results From the data that you collected from your independent investigation, graph the results. Based on the graph and your observations, compare the effects of biotic and abiotic environmental factors on the rate(s) of enzymatic reactions and explain any differences. Your report will be presented to the class on (date). 7