ADE SOFTWARE: MULTIVARIATE ANALYSIS AND GRAPHICAL DISPLAY OF ENVIRONMENTAL DATA



Similar documents
ADE-4 is a multivariate analysis and graphical display software

Computer program review

The ade4 package - I : One-table methods

Getting started manual

STATHAB/FSTRESS SOFTWARES

Visualization of textual data: unfolding the Kohonen maps.

Statistics without probability: the French way Multivariate Data Analysis: Duality Diagrams

Partial Least Squares (PLS) Regression.

Simple Predictive Analytics Curtis Seare

PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY

Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management

Principal Component Analysis

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Exploratory data analysis for microarray data

Polynomial Neural Network Discovery Client User Guide

4.7. Canonical ordination

Adaptive Enterprise Solutions

A shared component hierarchical model to represent how fish assemblages vary as a function of river temperatures and flow regimes

There are six different windows that can be opened when using SPSS. The following will give a description of each of them.

INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS

Benefits of Upgrading to Phoenix WinNonlin 6.2

Variables. Exploratory Data Analysis

Design & Analysis of Ecological Data. Landscape of Statistical Methods...

Device configurator DRC200

Sandra CAVACO CURRICULUM VITAE RESEARCH INTERESTS

QUALITY ENGINEERING PROGRAM

Chapter 2 Exploratory Data Analysis

Imaging and Bioinformatics Software

THE MULTIVARIATE ANALYSIS RESEARCH GROUP. Carles M Cuadras Departament d Estadística Facultat de Biologia Universitat de Barcelona

Tutorial #7A: LC Segmentation with Ratings-based Conjoint Data

Instructions for SPSS 21

3D Viewer. user's manual _2

Operating Systems. and Windows

The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA

IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA

Multivariate Analysis of Ecological Data

SPSS Manual for Introductory Applied Statistics: A Variable Approach

7 Time series analysis

Time series experiments

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)

Gerrit Stols

Appendix A How to create a data-sharing lab

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

How To Understand And Solve A Linear Programming Problem

Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement

MultiExperiment Viewer Quickstart Guide

It is important to bear in mind that one of the first three subscripts is redundant since k = i -j +3.

Additional sources Compilation of sources:

Directions for using SPSS

Component Ordering in Independent Component Analysis Based on Data Power

Tutorial: Get Running with Amos Graphics

NIRCal Software data sheet

If you are working with the H4D-60 or multi-shot cameras we recommend 8GB of RAM on a 64 bit Windows and 1GB of video RAM.

Multivariate Statistical Inference and Applications

DIRECTIONS FOR SETTING UP LABELS FOR MARCO S INSERT STOCK IN WORD PERFECT, MS WORD AND ACCESS

Plotting Data with Microsoft Excel

How To Use Statgraphics Centurion Xvii (Version 17) On A Computer Or A Computer (For Free)

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:

Data Mining: Algorithms and Applications Matrix Math Review

An Introduction to Point Pattern Analysis using CrimeStat

Quality assurance for hydrometric network data as a basis for integrated river basin management

Quick Reference Manual

A QTI editor integrated into the netuniversité web portal using IMS LD

Spatial information fusion

Tutorial: Get Running with Amos Graphics

Curriculum Vitae Member of the Scientific council of the Department of Economics at the University of Rennes.

PROPHIX Reporting What is PROPHIX?

Data Warehouse Troubleshooting Tips

NATIONAL GENETICS REFERENCE LABORATORY (Manchester)

A DATA ANALYSIS TOOL THAT ORGANIZES ANALYSIS BY VARIABLE TYPES. Rodney Carr Deakin University Australia

Data mining and official statistics

Chapter 2 The Data Table. Chapter Table of Contents

Data exploration with Microsoft Excel: analysing more than one variable

Data Visualization. Brief Overview of ArcMap

SIM User Guide. Version 8/06/2016

How to Get More Value from Your Survey Data

User Guide Win7Zilla

Adobe Dreamweaver CC 14 Tutorial

SonicWALL CDP 5.0 Microsoft Exchange InfoStore Backup and Restore

Tutorial for proteome data analysis using the Perseus software platform

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: PRELIS User s Guide

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster

Lab #8: Introduction to ENVI (Environment for Visualizing Images) Image Processing

ARM by Gylling Data Management, Inc. The Software Solution for Your Research Data Needs Website:

Multiple Correspondence Analysis

IBM SPSS Statistics 20 Part 1: Descriptive Statistics

Data Analysis Tools. Tools for Summarizing Data

Analysing Ecological Data

SAS Add-In 2.1 for Microsoft Office: Getting Started with Data Analysis

Spreadsheet software for linear regression analysis

Installing and Using the Monte Carlo Simulation Excel Add-in. Software for

FileMaker Pro and Microsoft Office Integration

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

How To Find Out How Roots Of A Polynome Are Calculated

Transcription:

ADE SOFTWARE: MULTIVARIATE ANALYSIS AND GRAPHICAL DISPLAY OF ENVIRONMENTAL DATA J. Thioulouse Laboratoire de Biométrie, Génétique et Biologie des Populations URA CNRS 243, Université Lyon 1 69622 Villeurbanne Cedex, France. S. Dolédec, D. Chessel, and J.M. Olivier Laboratoire d'ecologie des Eaux Douces et des Grands Fleuves URA CNRS 1451, Université Lyon 1 69622 Villeurbanne Cedex, France. PROGRAM ABSTRACT Name: ADE software 4.0. Date of release: 3/95. Developers: Jean Thioulouse, Daniel Chessel, Sylvain Dolédec. E-mail: chessel@biomserv.univ-lyon1.fr - Fax: (33) 72 43 11 41 - Ph: (33) 72 44 82 77. Contact for information: Jean Michel Olivier, Laboratoire d'ecologie des Eaux Douces et des Grands Fleuves, URA CNRS 1451, Université Lyon 1, 69622 Villeurbanne Cedex, France. Fax: (33) 72 43 11 41 - Ph: (33) 72 43 13 19. Case studies: Ecology of the Upper Rhône River: a test of habitat templet theories (see references). SW requirements: MacOS 7.0 or greater and HyperCard 2.2 to use the navigation stacks (optional). Computer type: Macintosh. RAM used: user definable, minimum 800 Kb. Mass storage requirements: 1-10 Mb, according to installed options. Estimated CPU time for standard applications: 1-5 seconds. Availability: ADE is freely available on the Internet by anonymous FTP to biom3.univ-lyon1.fr. It is also available on diskettes. 1. General remarks ADE (Analysis of Environmental Data) software deals with the multivariate analysis of environmental data sets. ADE 4.0 comes from the combination of ADE 3.7 (Chessel and Dolédec, 1993), and MacMul and GraphMu (Thioulouse, 1989, 1990). In ADE software, a series of multivariate techniques permits to analyze several types of data (e.g., quantitative, qualitative, presence/absence). The examples incorporated in ADE for trial runs mainly deal with ecological questions. However, people from other disciplines (e.g., chemometry, sociology) and interested in the use of linear ordination methods should find in ADE software the most recent developments. They includes one-table, two-table, and K-table (k 3) techniques. ADE software benefits of the user-friendliness of the Macintosh computer (scrolling menu, graphical performance). Furthermore we have designed ADE for non specialists in multivariate analysis and computer sciences. People having a basic statistical background and routinely using Macintosh computers should be able to use ADE software without any difficulty. 2. Multivariate analyses 2.1. One-table ordination Linear ordination techniques start with the analysis of data sets presented under the form of one array (Dolédec and Chessel, 1991). The ADE software performs three basic multivariate methods. Principal components analysis (PCA) is devoted to quantitative

measurements (Hötteling, 1933). Correspondence analysis (COA) enables the study of contingency tables (counts of the joint occurrences of rows and columns of a table, Hirschfeld, 1935). Multiple correspondence analysis (MCA) permits to analize qualitative (or categorical) variables (Nishisato, 1980; Tenenhaus and Young, 1985). Furthermore, if the table incorporates a priori groups of individuals, the user can process a discriminant analysis - also known as canonical variate analysis - (Mahalanobis, 1936; Tomassone et al., 1988), and between and within class analyses (Dolédec and Chessel, 1987, 1989). 2.2. Two-table ordination When two arrays are simultaneously analyzed (e.g., a floro-faunistic array and an environmental array to investigate a species-environment relationships), ADE can perform the following methods: (1) analyses with respect to instrumental variables (e.g., CANOCO method of ter Brak, 1986, 1988; Lebreton et al., 1991), and (2) co-inertia analysis (Chessel and Mercier, 1993; Dolédec and Chessel, 1994) and derived methods (such as the PLS regression, Höskuldsson, 1988). 2.3. K-table ordination The simultaneous ordination of three arrays (e.g., environmental array, faunistic array and species trait array) is available under the name of RLQ analysis (Dolédec et al., in preparation). Collections of arrays (e.g., ternary matrices such as sites x dates x variables) can be analyzed with the STATIS method ("Structuration des Tableaux à Trois indices de la Statistique" method of L'Hermier des Plantes, 1976; Escoufier, 1980; Lavit et al., 1994). Non parametric tests based on the results of random permutations processed on tables are included to several multivariate analyses (COA, discriminant analysis, coinertia analysis, and RLQ analysis). 3. User interface The ADE software incorporates a collection (program library) of computational and graphical modules that perform one or several operations (multivariate analyses or graphical display). The user can launch these modules directly from the Macintosh Finder (stand-alone use). All the modules of the same type have the same user interface, with just an Options menu that varies. For example, the menu of the PCA module is as follows: For a more comfortable use of the program library, the user of ADE may take advantage of the HyperCard interface composed of four HyperCard stacks (this requires HyperCard 2.2): (1) ADE Base is the main selection stack. It is used to launch the modules (Fig. 1). In that case, this stack is essential for operating the program library. It

also gives access to the other stacks. (2) ADE Biblio contains up to 870 bibliographic references. (3) ADE Data includes up to 140 numerical examples. (4) ADE Doc (Documentation) contains the information about the function and the use of modules. B A Figure 1. Operating the ADE Base selection card. The left hand field of this card contains a list of the files included into the user data folder. (A) The PCA module and thecorrelation matrix PCA option were selected. Information (Info) about the various options of the module is available from this menu. The Run option launches the corresponding module, which main dialog window allows the user to select the input

files and other parameters. (B) Other stacks such as the ADE Data stack can be launched from ADE Base. We present here an example of ADE Data card. These cards include a series of data fields that can be stored into the user data folder. Each stack incorporates a number of cards. The cards included into ADE Data are of special interest because the data incorporated to a given card may be copied and then processed with modules. All the analyses and graphics operate in a given directory. This directory is selected or created with the Data Folder menu (Fig. 1). 4. Graphical display The ADE software puts the emphasis on graphical methods according to the theoretical background developed by Thioulouse et al. (1991). Numerous graphical programs are available in ADE software (see example in Statzner et al., 1994). The user can draw graphics according to multivariate analyses (e.g., factor maps), cartography (e.g., isolevel curves (Fig. 2), gray level maps, maps with circles and squares), and several other kinds of graphical display (e.g., histograms, Gauss curves, ellipses, convex hulls). Automatic collections or superimpositions of graphics are available to represent either the variables (columns) of a data set or groups of individuals (rows). 1-T mini January 2-T maxi January 3-T mini July 4-T maxi July Figure 2. Example of isolevel curves using 9 neighbours. A number of graphic modules (e.g. lattice grid) are dedicated to the handling of spatial arrangement of data. A multiwindowed option is available for that kind of graphics. In this example, four meteorological variables were recorded into 23 districts. As for computational modules, the user selects an item in the Options menu (Fig. 3A). Graphical modules have an additional Windows menu (Fig. 3B), from which the user can navigate among the various windows that can be used to set the graphic parameters (Fig. 4). A B Figure 3. Options (A) and Windows (A) menus of a graphical module.

The Min/Max window (Fig. 5A) allows the user to set the values of several parameters (e.g., minimum and maximum values, number of horizontal and vertical graphics in the case of a collection of graphics, graphical window height and width). The Row & col. selection window (Fig. 5B) enables the management of a collection of graphics (each column and each group of rows will make one graphic). Figure 4. Initiating a correlation circle with the label item of the Options menu. A B Figure 5. (A) Min/Max dialog window for changing the parameters of the set of graphics. (B) Row&Col. selection dialog window for separating the entire graphic into sub-graphics using a selection of rows and columns. ADE software 4.0 is compatible with any software able to export data arrays as plain text files (e.g., Excel, StatView, Word). Graphics can be stored as PICT files that can be handled with commercial software compatible with this format (MacDraw, SuperPaint, ClarisDraw, and many others). References Chessel, D. & Dolédec, S. (1993). ADE Version 3.7: HyperCard Stacks and QuickBasic MicroSoft program library for the Analysis of Environmental Data. URA CNRS 1451, Université Lyon 1, Villeurbanne, France. Chessel, D. and Mercier, P. (1993). Couplage de triplets statistiques et liaisons espècesenvironnement. In: Biométrie et Environment, Lebreton, J.D. and Asselain, B. (Eds.), pp. 15-44. Masson, Paris.

Dolédec, S. and Chessel, D. (1987). Rythmes saisonniers et composantes stationnelles en milieu aquatique I- Description d'un plan d'observations complet par projection de variables. Acta Oecologica, Oecologia Generalis, vol. 8, pp. 403-426. Dolédec, S. and Chessel, D. (1989) Rythmes saisonniers et composantes stationnelles en milieu aquatique II- Prise en compte et élimination d'effets dans un tableau faunistique. Acta Oecologica, Oecologia Generalis, vol. 10, pp. 207-232. Dolédec, S. and Chessel, D. (1991). Recent developments in linear ordination methods for environmental sciences. Advances in Ecology, India, vol. 1, pp. 133-155. Dolédec, S. and Chessel, D. (1994). Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology, vol. 31, pp. 277-294. Dolédec, S., Chessel, D. and Champély, S. (in preparation). A new three-table ordination method for matching species traits to environmental variables. Escoufier, Y. (1980). L'analyse conjointe de plusieurs matrices de données. In: Biométrie et Temps. Jolivet, M. (Ed.), pp. 59-76. Société Française de Biométrie, Paris. Hirschfeld, H.O. (1935). A connection between correlation and contingency. Proceedings of the Cambridge Philosophical Society, Mathematical and Physical Sciences, vol. 31, pp. 520-524. Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, vol. 2, pp. 211-228. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, vol. 24, pp. 417-441. L'Hermier des Plantes, H. (1976). Structuration des tableaux à trois indices de la statistique. Théorie et applications d'une méthode d'analyse conjointe, Thesis, USTL, Montpellier. Lavit, Ch., Escoufier, Y., Sabatier, R. and Traissac, P. (1994) The ACT (Statis method). Computational Statistics and Data Analysis, vol. 18, pp. 97-119. Lebreton, J.D., Sabatier, R., Banco, G. and Bacou, A.M. (1991). Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species- environment relationships. In: Applied Multivariate Analysis in SAR and Environmental Studies Devillers, J. and Karcher, W. (Eds.), pp. 85-114. Kluwer, Dordrecht. Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, vol. 12, pp. 49-55. Nishisato, S. (1980). Analysis of caregorical data: dual scaling and its applications. University of Toronto Press, London. Statzner, B., Resh, V.H. and Dolédec, S. (1994). Ecology of the Upper Rhône River: a test of habitat templet theories. Freshwater Biology, vol. 31, pp. 253-554. Tenenhaus, M. and Young, F.W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis ans other methods for quantifying categorical multivariate data. Psychometrika, vol. 50, pp. 91-119. ter Braak, C.J.F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, vol. 69, pp. 69-77. ter Braak, C.J.F. (1988). Partial Canonical Analysis. In: Classification an related methods of data analysis. Bock, H.H. (Ed.), pp. 551-558. North Holland. Thioulouse, J. (1989). Statistical analysis and graphical display of multivariate data on the MacIntosh. Computer Applications in the BioSciences, vol. 5, pp. 287-292. Thioulouse, J. (1990). MacMul and GraphMu: two Macintosh programs for the display and analysis of multivariate data. Computers and Geosciences, vol. 8, pp. 1235-1240. Thioulouse, J., Devillers, J., Chessel, D. and Auda, Y. (1991). Graphical techniques for multidimensional data analysis. In: Applied Multivariate Analysis in SAR and

Environmental Studies. Devillers, J. and Karcher, W. (Eds.), 153-205. Kluwer, Dordrecht. Tomassone, R., Danzard, M., Daudin, J.J., and Masson, J.P. (1988). Discrimination et classement. Masson, Paris.