An Introduction to Point Pattern Analysis using CrimeStat
|
|
|
- Eustace Reed
- 10 years ago
- Views:
Transcription
1 Introduction An Introduction to Point Pattern Analysis using CrimeStat Luc Anselin Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois, Urbana-Champaign June 24, 2003 This is a brief introduction to the analysis of patterns in points (as events) using Ned Levine s CrimeStat 2.0 software package. This package is freely available and can be obtained on the web from The data used in this tutorial are the Pittsburgh homicide locations (various Pitt* files) and the Cardiff juvenile offender addresses (juvenile), both obtainable as shape files from the SAL sample data repository Some familiarity is assumed with either ArcView or ArcGIS, optionally with the Spatial Analyst extension, to implement visualization of various results. CrimeStat does not have its own visualization capability, but relies on an external GIS through the export of result files. Getting started with CrimeStat Start CrimeStat by double clicking its icon. Click on the welcome screen to open the main interface, shown in Figure 1. Figure 1. CrimeStat opening screen.
2 Note how in some systems (like the one used for this tutorial, running Windows Xp) the bottom buttons are not fully legible. They stand for, left to right, Compute, Quit and Help. Help brings up an extensive help system. The four tabs at the top of the interface correspond to some logical steps in the way CrimeStat implements analysis. First, one needs to set up the data and possibly set some options, then choose the type of analysis (spatial description or spatial modeling). The analysis is run by clicking on the Compute button in the bottom left. Data setup in CrimeStat CrimeStat reads data from various format files, including shape files. You will be using the juvenile.shp data set from the Bailey-Gatrell text in this example. This is a very simple data file with only the X, Y coordinates of the offender addresses. You can load this into ArcView to have a quick sense of the overall pattern, as in Figure 2. 1 Figure 2. Juvenile point pattern in ArcView. In CrimeStat, click on the Data setup tab to bring up the interface, shown in Figure 1. In this case, there is only one point pattern, so you only need to specify the Primary File parameters. For case-control studies, you would specify the cases as the Primary File and the controls as the Secondary File. Many routines in CrimeStat also use a Reference File, which is essentially a rectangular grid superimposed over the data points, in order to carry out density estimation or interpolation. In the Primary File tab, specify the juvenile.shp file as the input file. Click on the Select Files button and on Browse in the File Characteristics dialog. Move around in the file system until you locate the juvenile.shp file in your working directory, as shown in Figure 3. Select this file and confirm the selection in the File Characteristics dialog (click 1 Open ArcView, and, with the Views icon active, click on New. Then add a theme by clicking on the + (plus) icon and locate the juvenile.shp file. Make sure to click on the check mark to make the theme visible. 2
3 OK) and the file name will appear in all the input fields in the user interface, as shown in Figure 4. Figure 3. Select input file (Primary File) Figure 4. Primary File available for the specification of variables. Several options are available to specify weights, time and directional effects besides the X, Y coordinates. You will not be using these additional items in the current exercise, but feel free to explore their use (CrimeStat comes with an extensive manual and several sample data sets). For now, set X to X and Y to Y. Also make sure the coordinate system is set to Projected. You can ignore the data units and time unit since there is no time in the Juvenile data set. Your Data setup interface should now look as in Figure 5. 3
4 Figure 5. Variables and projection selected. Next, specify a reference grid that will be used in the kernel density estimation routines. Click on the Reference File tab and check the Create Grid radio button. Now, specify 0, 0 as the lower left and 100, 100 as upper right as in Figure 6, and leave the default to 100 grid columns. In the Cardiff data set, the actual bounding rectangle is 2, 6 to 94, 95 (you can find out manually using the Identify function in ArcView). Figure 6. Specifying a Grid as a reference file. 4
5 Save the Grid specifications for later use to a file in your working directory. This is a two-step process. First, you Save the grid specification by clicking on the Save button in the interface (Figure 6). This brings up a dialog to name the particular grid setup, as in Figure 7. However, this does not save it to a file. To store this (and other) named grid specifications in a file, first Load them (Load button in Figure 6) and then Save to File in the following dialog, as in Figure 8. Practice Start a second instance of CrimeStat and use the Pitthom.dbf file as the primary file. Set up the coordinates and the reference grid (use the Identify button in ArcView to determine the coordinates of the lower-left and upper-right corners of the bounding rectangle). Figure 7. Save reference grid. Centrography Figure 8. Load and save reference coordinates from/to a file. Basic descriptive statistics of the overall pattern of the points are the mean and median center and the standard deviational ellipse. These summaries are computed in CrimeStat as part of the Spatial Description tab under the Spatial Distribution items. The output can be saved to a shape file (as well as other formats) for overlay on the point pattern. With the juvenile point pattern as the Primary File (and with the X and Y coordinates specified), click on the Spatial Description tab to bring up the Spatial Distribution dialog. Select the check boxes next to Mean center and standard distance (Mcsd), Standard deviational ellipse (Sde) and Median Center (MdnCntr), as in Figure 9. Also specify file names for the output to be saved to a shape file (make sure to select ArcView SHP as the option in the Save output to list, as in Figure 9). This needs to be done for each descriptive statistic. Click on the Compute button (lower left) to start the calculations. 5
6 The results will appear in a screen, as in Figure 10. Note the tabs on the top of the screen, which let you select the output for each set of descriptive statistics (Mcsd, Sde, and MdnCntr). You can now save these results to a text file, or print them out. Figure 9. Centrography settings. Figure 10. Mean center result screen. A more visual representation of the centrographic characteristics of the point pattern is obtained by overlaying the computed shape files on the original pattern. When the Save Result to option is used, a number of shape files are created in the current working directory. These have the same name as specified in the file dialog, with a prefix indicating the type of results contained in them. The mean center is in the MCfile.shp shape file, median center in MdnCntrfile.shp, standard deviational ellipse in 6
7 2SDEfile.shp, etc. (see the CrimeStat manual for a full list of options). For example, in Figure 11, the mean center (green cross), median center (red dot), standard deviational rectangle (black rectangle), standard distance deviation (blue circle) and standard deviational ellipse (green ellipse) are illustrated for the juvenile point pattern. The matching shape file names are given in the legend panel. In this particular application, the mean and median centers are practically the same and there is only a slight indication of a directional effect (the circle and ellipse are very close, a strong directional effect would be shown when the ellipse would be very elongated along one axis). Practice Carry out an centrographic analysis of the point pattern for the Pittsburgh homicides (use Pitthom.shp as the Primary File). Overlay the results on the map of points in ArcView (or ArcGIS). For a challenge, compare and visualize the summary statistics between the homicides in 93 and 94. To accomplish this, you will need to build a query in ArcView/ArcGIS to select those observations for which the Event_yr is 93 (or 94), followed by a Theme > Convert to Shape file command to create a separate shape file for the selected observations. Then specify the new shape file as the Primary File in the CrimeStat analysis. Figure 11. Centrography of Cardiff juvenile offender addresses. 7
8 Kernel density estimation Kernel density estimation is implemented under the Interpolation functionality of the Spatial modeling tab in CrimeStat. Note that, strictly speaking, kernel density estimation is not an interpolation technique, but more precisely the estimation of a probability surface. CrimeStat includes five kernel estimators: the normal, uniform, spherical, conical and negative exponential (see the CrimeStat manual, pp , for mathematical details). The main difference between these is that the normal includes all points in the pattern, whereas the others have a distance cut-off beyond which no points are included in the kernel estimation. The kernel is estimated for each point on a grid that is overlaid on the point pattern (the Reference File, Grid). Each of the kernels allows you to specify a kernel bandwidth as a fixed interval or to choose an adaptive interval (the default). It is important to understand that the default for an adaptive interval is to include 100 points in the kernel estimation for each location on the grid. For small data sets, this will tend to lead to a very smooth (and largely uninformative) surface. You can also set the bandwidth to a fixed distance range (interval). This requires that the point coordinates are in meaningful units to yield distance measures in common units, such as feet, meters or miles. This is not the case in the juvenile example. Some experimentation with the bandwidth specification is typically necessary. The kernel values are computed as totals, or absolute density (points per grid area, rescaled such that the sum over all grids adds up to the observed total), as points per areal units, or relative density (i.e., points per square mile), or as probabilities. Output can be saved in a number of formats, such as a shape file of grid polygons. To compute some different kernel surfaces for the Cardiff juvenile data, make sure to use the juvenile.shp file as the Primary File and set the Grid option in the Reference file to 100 grids starting at 0, 0 (lower left) up to 100, 100 (upper right). In the Spatial Modeling tab, select Interpolation. Keep the method as normal, but specify 25 as the minimum sample size in the Adaptive bandwidth specification. For now, keep the calculation option to the default of Absolute Densities. Your setup should look as in Figure 12. You can practice later with changing these settings. To visualize the estimated surface in ArcView, make sure to set the save results to option to the shape file option, as in Figure 13. This will write a shape file to the working directory that has the interpolated value as the Z variable for each square grid. In Figure 13, the file name juvgrid0 was specified. Click on Compute to start the process. The results appear in a CrimeStat results window, as shown in Figure 14. You must click on the Kernel Density tab to see the results (the default is to show the results for the first analysis tab). You can scroll through the results window or save the results to a text file. You must use the slider bar to the left of the results and the Go button to see more than the first 45 interpolated values. In addition, a shape file Kjuvgrid0.shp has been added to your working directory. 8
9 Figure 12. Normal kernel density estimation setup. Figure 13. Kernel output file specification. Figure 14. Kernel calculation results. 9
10 To visualize the estimated surface, open up ArcView and add the Kjuvgrid0 theme. You must use the legend editor to turn this into a meaningful grid map. In ArcView (use similar commands in other GIS software) select Graduated Color as the legend type and use Z as the Calculation Field. For now, you can keep the default Natural Breaks classification (you can experiment with different types of classifications later). The resulting grid map will be as in Figure 15, with the original point pattern superimposed. If you are familiar with ESRI s Spatial Analyst extension, you can convert the polygon grid shape file to Spatial Analysts s grid format and then use the Surface analysis functionality to superimpose contour lines on the density surface. For example, Figure 16 is the result of such an operation, with the extent of the grid and contour themes set to the extent of juvenile.shp, and with as the contour step. 2 Note how the normal kernel density tends to smooth the surface and remove a lot of the underlying detail in the original pattern. Experiment with changing some of the parameters, such as the kernel bandwidth. Figure 15. Normal kernel density. 2 The steps involved in obtaining this result are as follows, illustrated for ArcView (they are slightly different in ArcGIS). First, make sure the Spatial Analyst extension has been activated. With the grid polygon theme active, select Theme > Convert to Grid, set the extent to that of juvenile.shp, the number of rows, columns to 100, and Z as the field for the grid values. Add the new grid theme to a View (make sure to set the input file type to grid instead of Feature) and then select Surface > Create Contours. Set the interval to and you should see the same result as in Figure 16. Make sure to use the legend editor to turn the contour theme into a graduated color with contour as the variable. 10
11 Figure 16. Normal density kernel with contour lines. Figure 17. Triangular kernel density. 11
12 The kernel density results are very sensitive to the choice of kernel model and settings. To illustrate this, consider a Triangular kernel with the same settings as for the Normal (25 points cutoff for the Adaptive bandwidth). The result is as in Figure 17, which is much spikier and focuses on several hot spots rather than the central tendency reflected in Figures Experiment with different settings, for example, changing the bandwidth to 50. The kernel densities differ with respect to how steep the cutoff is and how smooth the resulting surface will be. Some trial and error will start to show some persistent patterns in the data, suggesting potential clusters or hot spots. Practice Use the Pittburgh homicide file to construct a normal and triangular (or other type) kernel density surface. If you are comfortable with the Spatial Analyst, display the surfaces as isoline maps (contour maps). If you have created separate shape files for 93 and 94, you can compare the clusters and hot spots suggested by the kernel densities between the two years. You can also create different shape files using the other variables to distinguish between point patterns, such as gang-related vs. non gang-related, or using guns vs. not using guns. Nearest Neighbor distance statistic In order to more formally assess the extent to which a point pattern shows clustering or dispersion, two main classes of techniques can be applied. The first uses the magnitude and/or distribution of inter-point distances, or the distances between the points and reference locations as an indicator (distance based tests). The second set of methods uses the number of points within a given area as the basis for test statistics (quadrat counts). The simplest of the distance based statistics uses the distribution of the distance to the nearest neighbor as a measure. If this distance tends to be smaller than what it would be under complete spatial randomness, this suggests clustering. If, on the other hand, it tends to be larger, then dispersion is the suggested alternative. A Nearest Neighbor statistic is implemented in CrimeStat in the Distance Analysis tab of Spatial Description. Make sure you have the juvenile.shp file as the primary file with the proper coordinates and projection set. You do not need the Reference File for these calculations. In the Distance Analysis dialog, check the box next to Nearest Neighbor Analysis (Nna) and leave the defaults to their settings, as in Figure 18. Figure 18. Nearest Neighbor analysis setup. 12
13 Click on the Compute button to carry out the analysis. The result window will contain the summary statistics. You can save these to a text file, the contents of which are as in Figure 19. Note that it does not make much sense to save the results to a dbf file, since only the summary distance statistic will be saved, not the full distribution of nearest neighbor distances. The results yield a Nearest Neighbor Index of , which is obtained by taking the ratio of the observed mean nearest neighbor distance to the mean random distance. The value less than 1 suggests clustering. A test statistic can be constructed by taking the difference between the observed and random mean nearest neighbor distance and standardizing by the standard error. The resulting Z-value of is well above the usual critical values, suggesting significant clustering. However, these tests have to be interpreted with some caution. Also, there are many nearest neighbor based statistics, and they don t necessarily lead to the same conclusion. You can assess the sensitivity of the results to a number of settings, such as the use of border corrections. 3 Practice Compute the nearest neighbor index to assess the extent of clustering of the Pittsburgh homicide point pattern. Compare the results for the two periods combined and for each time period separately. Also compare the findings for different types of crimes (guns or not, gangs or not). Try different border corrections to assess the sensitivity of the results. Figure 19. Results of nearest neighbor analysis. 3 Note that in order to use the Manhattan distance (linear nearest neighbor index) feature, you must specify the total length of the street network, which is not available for the Juvenile or Pittsburgh data sets. 13
14 Ripley s K function The nearest neighbor distance statistics are described as first order statistics, since they only consider the distance to the nearest point. Second order distance statistics consider the complete distribution of all distances in the point pattern. Ripley s K function is an example of such a second order statistic, and is essentially a test on the cumulative distribution function of the full set of inter-point distances. This distribution can be compared to a reference distribution under complete spatial randomness. A higher proportion of shorter distances than random would suggest clustering, whereas a higher proportion of longer distances suggests dispersion. CrimeStat implements Ripley s K function under the Distance Analysis of the Spatial Description tab. The program does not report the actual K function results, but instead the L function, which is simply a rescaled K function such that the reference for complete spatial randomness is linear and horizontal (at zero). Make sure the juvenile.shp primary file is set, with the proper coordinates and projection. Check the box next to Ripley s K statistic (and uncheck the box next to Nna), set the number of simulation runs to 1000 and specify a dbase file for the output, as illustrated in Figure 20. The cumulative distribution, organized in 100 distance bins will then be written to a dbase file. Note that the program will add the prefix Ripley to whatever filename you specify, so in the example of Figure 20, the dbase file will be called Ripleyjuvripley.dbf (and not juvripley.dbf as you might expect). Click on Compute to start the calculation and simulation runs. This may take a while, depending on how many simulation runs you specified. When the program is finished, click on the Ripley tab in the results window to see the output, as illustrated in Figure 21. Figure 20. Ripley s K setup. 14
15 Figure 21. Ripley s K results window. The results window is not that easy to interpret, since it is basically a list of values of the L function and selected quantiles under complete spatial randomness for 100 distance bins. To better visualize this, load the output dbf file (Ripleyjuvripley.dbf) into a spreadsheet or graphing package and turn it into a graph, as in Figure 22. This was accomplished by using an Excel scatter graph with the bin distances as the X-axis and on the vertical axis the L values, L(csr), a horizontal line at zero, L(t)max and L(t)min, the max and min of the randomization envelope. Note how the dark blue line is outside the randomization envelope for shorter distances, suggesting clustering. Figure 22. Ripley s L function. 15
16 Practice As before, use the Pittsburgh homicide data and Ripley s K function to assess overall clustering of homicides (overall, by year and/or by type). Visualize the computed distributions in a spreadsheet or graphing package. Experiment with border adjustments to assess the sensitivity of the results. Hot Spot detection (STAC) Quadrat methods assess the presence of clusters by comparing the number of events (points) within a given region to the number expected under complete spatial randomness. The STAC (Spatial and Temporal Analysis of Crime) method is a form of quadrat method. More precisely, it is a combination of a scan statistic (counting the number of events within a circle) and a hierarchical clustering technique (points that are present in more than one identified clustered circles result in all the points in the two circles to be combined). The results are visualized as a standard deviational ellipse computed for the points identified to be a cluster or hot spot. The significance of the identified cluster can be assessed by means of a Monte Carlo randomization method. STAC is implemented in CrimeStat under the Hot Spot Analysis II tab of the Spatial Description tab. Make sure the juvenile.shp file is set as the Primary File with the proper coordinates and projection specified, and set the Reference File as the 100 x 100 grid with origin at 0, 0, as before. Also set the Data Units to Kilometers. Check the box next to STAC on the interface, and set the Output Units to Kilometers, as in Figure 23. Click on the save ellipses to button to specify the output file for the standard deviational ellipses as a shape file and enter the file name in the text box, as in Figure 24. Finally, you need to set the parameters for the STAC algorithm (make sure you have specified the Grid option in the Reference File tab or STAC won t work). As in any clustering operation, the results of STAC are quite sensitive to these parameters. The most important ones are the search radius (STAC uses a circle with a fixed radius in the scan operation) and the minimum number of points to consider a cluster. Both of these are context specific and may require some trial and error. For example, setting the search radius too large or too small may not yield any clusters. In Figure 25, the settings are 10 for the search radius and 5 for the minimum number of points. Also specify 1000 for the number of randomizations (this is not required for the STAC algorithm to work). Click on Compute to start the analysis. This yields 3 clusters, as shown in the results window in Figure 26. Figure 23. STAC setup interface. 16
17 Figure 24. STAC output file specification. Figure 25. STAC parameters. Figure 26. STAC results 17
18 For the search radius of 10, the results are not that useful. Three clusters are identified, and their mean center, area, number of points and density are listed in the results page (Figure 26). When superimposing the ellipse shape file on the point pattern, it is obvious that the first (largest) cluster is not a useful hot spot in that it contains 128 out of the 168 points in the pattern, as shown in Figure 27. Resetting the search radius to 5 yields 10 clusters, shown in Figure 28. You can further experiment with setting a different search radius, changing the minimum number of points for a cluster, etc. Another interesting comparison is to overlay the STAC ellipses on the kernel density grid, to get further insight into the overall patterns in the points. As shown in Figure 29, there is some correspondence between some of the clusters and the higher elevation densities, but not total. In part this is due to the different densities in the clusters (not all of them are high density since they may have resulted from collapsing several initial clusters). Practice Use the Pittsburgh homicide data (pitthom.shp) to carry out a hot spot analysis using STAC. Experiment with different search radii. Start with 500, using miles as the distance unit and 50194, , as the bounding box. Increase the radius and assess the effect. As before, you can also carry out analyses for the individual years and/or crime types. Compare the STAC ellipses to one of the kernel density estimates and assess the degree of similarity in the suggestion of clusters and hot spots. Figure 27. STAC ellipses on point pattern. 18
19 Figure 28. Refined STAC ellipses. Figure 29. STAC ellipses and triangular kernel density. 19
Modeling Fire Hazard By Monica Pratt, ArcUser Editor
By Monica Pratt, ArcUser Editor Spatial modeling technology is growing like wildfire within the emergency management community. In areas of the United States where the population has expanded to abut natural
Data Visualization. Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004
Data Visualization Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Contents Brief Overview of ArcMap Goals of the Exercise Computer
Table of Contents TASK 1: DATA ANALYSIS TOOLPAK... 2 TASK 2: HISTOGRAMS... 5 TASK 3: ENTER MIDPOINT FORMULAS... 11
Table of Contents TASK 1: DATA ANALYSIS TOOLPAK... 2 TASK 2: HISTOGRAMS... 5 TASK 3: ENTER MIDPOINT FORMULAS... 11 TASK 4: ADD TOTAL LABEL AND FORMULA FOR FREQUENCY... 12 TASK 5: MODIFICATIONS TO THE HISTOGRAM...
Lesson 3 - Processing a Multi-Layer Yield History. Exercise 3-4
Lesson 3 - Processing a Multi-Layer Yield History Exercise 3-4 Objective: Develop yield-based management zones. 1. File-Open Project_3-3.map. 2. Double click the Average Yield surface component in the
Applying a circular load. Immediate and consolidation settlement. Deformed contours. Query points and query lines. Graph query.
Quick Start Tutorial 1-1 Quick Start Tutorial This quick start tutorial will cover some of the basic features of Settle3D. A circular load is applied to a single soil layer and settlements are examined.
Scatter Plots with Error Bars
Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each
Data Visualization. Brief Overview of ArcMap
Data Visualization Prepared by Francisco Olivera, Ph.D., P.E., Srikanth Koka and Lauren Walker Department of Civil Engineering September 13, 2006 Contents: Brief Overview of ArcMap Goals of the Exercise
Introduction to Exploratory Data Analysis
Introduction to Exploratory Data Analysis A SpaceStat Software Tutorial Copyright 2013, BioMedware, Inc. (www.biomedware.com). All rights reserved. SpaceStat and BioMedware are trademarks of BioMedware,
TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:
Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap
GelAnalyzer 2010 User s manual. Contents
GelAnalyzer 2010 User s manual Contents 1. Starting GelAnalyzer... 2 2. The main window... 2 3. Create a new analysis... 2 4. The image window... 3 5. Lanes... 3 5.1 Detect lanes automatically... 3 5.2
Lab 7. Exploratory Data Analysis
Lab 7. Exploratory Data Analysis SOC 261, Spring 2005 Spatial Thinking in Social Science 1. Background GeoDa is a trademark of Luc Anselin. GeoDa is a collection of software tools designed for exploratory
SECTION 2-1: OVERVIEW SECTION 2-2: FREQUENCY DISTRIBUTIONS
SECTION 2-1: OVERVIEW Chapter 2 Describing, Exploring and Comparing Data 19 In this chapter, we will use the capabilities of Excel to help us look more carefully at sets of data. We can do this by re-organizing
DeCyder Extended Data Analysis module Version 1.0
GE Healthcare DeCyder Extended Data Analysis module Version 1.0 Module for DeCyder 2D version 6.5 User Manual Contents 1 Introduction 1.1 Introduction... 7 1.2 The DeCyder EDA User Manual... 9 1.3 Getting
Spatial Analyst Tutorial
Copyright 1995-2010 Esri All rights reserved. Table of Contents About the ArcGIS Spatial Analyst Tutorial......................... 3 Exercise 1: Preparing for analysis............................ 5 Exercise
EXPLORING SPATIAL PATTERNS IN YOUR DATA
EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze
Universal Simple Control, USC-1
Universal Simple Control, USC-1 Data and Event Logging with the USB Flash Drive DATA-PAK The USC-1 universal simple voltage regulator control uses a flash drive to store data. Then a propriety Data and
INTRODUCTION TO EXCEL
INTRODUCTION TO EXCEL 1 INTRODUCTION Anyone who has used a computer for more than just playing games will be aware of spreadsheets A spreadsheet is a versatile computer program (package) that enables you
Comparison of Programs for Fixed Kernel Home Range Analysis
1 of 7 5/13/2007 10:16 PM Comparison of Programs for Fixed Kernel Home Range Analysis By Brian R. Mitchell Adjunct Assistant Professor Rubenstein School of Environment and Natural Resources University
Getting Started with the ArcGIS Predictive Analysis Add-In
Getting Started with the ArcGIS Predictive Analysis Add-In Table of Contents ArcGIS Predictive Analysis Add-In....................................... 3 Getting Started 4..............................................
Excel -- Creating Charts
Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel
Intro to Excel spreadsheets
Intro to Excel spreadsheets What are the objectives of this document? The objectives of document are: 1. Familiarize you with what a spreadsheet is, how it works, and what its capabilities are; 2. Using
Understand the Sketcher workbench of CATIA V5.
Chapter 1 Drawing Sketches in Learning Objectives the Sketcher Workbench-I After completing this chapter you will be able to: Understand the Sketcher workbench of CATIA V5. Start a new file in the Part
Heat Map Explorer Getting Started Guide
You have made a smart decision in choosing Lab Escape s Heat Map Explorer. Over the next 30 minutes this guide will show you how to analyze your data visually. Your investment in learning to leverage heat
Expert Review and Questionnaire (PART I)
NASA ARC Project 1-9-2001 Web-based Geospatial Information Services and Analytic Tools for Habitat Conservation and Management Expert Review and Questionnaire (PART I) Thank you for participating in this
Hierarchical Clustering Analysis
Hierarchical Clustering Analysis What is Hierarchical Clustering? Hierarchical clustering is used to group similar objects into clusters. In the beginning, each row and/or column is considered a cluster.
Getting Started With Mortgage MarketSmart
Getting Started With Mortgage MarketSmart We are excited that you are using Mortgage MarketSmart and hope that you will enjoy being one of its first users. This Getting Started guide is a work in progress,
University of Arkansas Libraries ArcGIS Desktop Tutorial. Section 2: Manipulating Display Parameters in ArcMap. Symbolizing Features and Rasters:
: Manipulating Display Parameters in ArcMap Symbolizing Features and Rasters: Data sets that are added to ArcMap a default symbology. The user can change the default symbology for their features (point,
Creating and Manipulating Spatial Weights
Creating and Manipulating Spatial Weights Spatial weights are essential for the computation of spatial autocorrelation statistics. In GeoDa, they are also used to implement Spatial Rate smoothing. Weights
Figure 1. An embedded chart on a worksheet.
8. Excel Charts and Analysis ToolPak Charts, also known as graphs, have been an integral part of spreadsheets since the early days of Lotus 1-2-3. Charting features have improved significantly over the
Graphing Parabolas With Microsoft Excel
Graphing Parabolas With Microsoft Excel Mr. Clausen Algebra 2 California State Standard for Algebra 2 #10.0: Students graph quadratic functions and determine the maxima, minima, and zeros of the function.
Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored.
In this lesson you will create a Digital Elevation Model (DEM). A DEM is a gridded array of elevations. In its raw form it is an ASCII, or text, file. First, you will interpolate elevations on a topographic
Chapter 4 Creating Charts and Graphs
Calc Guide Chapter 4 OpenOffice.org Copyright This document is Copyright 2006 by its contributors as listed in the section titled Authors. You can distribute it and/or modify it under the terms of either
GeoDa 0.9 User s Guide
GeoDa 0.9 User s Guide Luc Anselin Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois, Urbana-Champaign Urbana, IL 61801 http://sal.agecon.uiuc.edu/ and
BD CellQuest Pro Software Analysis Tutorial
BD CellQuest Pro Analysis Tutorial This tutorial guides you through an analysis example using BD CellQuest Pro software. If you are already familiar with BD CellQuest Pro software on Mac OS 9, refer to
Tutorial 8 Raster Data Analysis
Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations
INSTRUCTIONS FOR MAKING 3D,.DWG CONTOUR LINES
INSTRUCTIONS FOR MAKING 3D,.DWG CONTOUR LINES A TUTORIAL FROM SPATIAL AND NUMERIC DATA SERVICES NICOLE SCHOLTZ AND GEOFF IVERSON Overview... 2 A. Get a Digital Elevation Model (DEM)... 3 B. Open ArcMap,
SimplyMap Canada Tutorial
SimplyMap Canada Tutorial SimplyMap Canada is a web mapping application developed by Geographic Research Inc. The application enables users to create thematic maps and reports using demographic, business,
Scientific Graphing in Excel 2010
Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.
Custom Reporting System User Guide
Citibank Custom Reporting System User Guide April 2012 Version 8.1.1 Transaction Services Citibank Custom Reporting System User Guide Table of Contents Table of Contents User Guide Overview...2 Subscribe
Modifying Colors and Symbols in ArcMap
Modifying Colors and Symbols in ArcMap Contents Introduction... 1 Displaying Categorical Data... 3 Creating New Categories... 5 Displaying Numeric Data... 6 Graduated Colors... 6 Graduated Symbols... 9
Lesson 15 - Fill Cells Plugin
15.1 Lesson 15 - Fill Cells Plugin This lesson presents the functionalities of the Fill Cells plugin. Fill Cells plugin allows the calculation of attribute values of tables associated with cell type layers.
Working with Data from External Sources
Working with Data from External Sources Bentley WaterCAD V8i supports several methods of exchanging data with external applications, preventing duplication of effort and allowing you to save time by reusing
http://school-maths.com Gerrit Stols
For more info and downloads go to: http://school-maths.com Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It
Personal Geodatabase 101
Personal Geodatabase 101 There are a variety of file formats that can be used within the ArcGIS software. Two file formats, the shape file and the personal geodatabase were designed to hold geographic
INTRODUCTION to ESRI ARCGIS For Visualization, CPSC 178
INTRODUCTION to ESRI ARCGIS For Visualization, CPSC 178 1) Navigate to the C:/temp folder 2) Make a directory using your initials. 3) Use your web browser to navigate to www.library.yale.edu/mapcoll/ and
Data representation and analysis in Excel
Page 1 Data representation and analysis in Excel Let s Get Started! This course will teach you how to analyze data and make charts in Excel so that the data may be represented in a visual way that reflects
Making Visio Diagrams Come Alive with Data
Making Visio Diagrams Come Alive with Data An Information Commons Workshop Making Visio Diagrams Come Alive with Data Page Workshop Why Add Data to A Diagram? Here are comparisons of a flow chart with
WFP Liberia Country Office
1 Oscar Gobbato [email protected] [email protected] WFP Liberia Country Office GIS training - Summary Objectives 1 To introduce to participants the basic concepts and techniques in using Geographic
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
Petrel TIPS&TRICKS from SCM
Petrel TIPS&TRICKS from SCM Knowledge Worth Sharing Import and Digitize from a Bitmap Using Petrel Often a map with culture lines, contours or well spots is provided in paper form and must be entered into
Plotting Data with Microsoft Excel
Plotting Data with Microsoft Excel Here is an example of an attempt to plot parametric data in a scientifically meaningful way, using Microsoft Excel. This example describes an experience using the Office
Excel Tutorial. Bio 150B Excel Tutorial 1
Bio 15B Excel Tutorial 1 Excel Tutorial As part of your laboratory write-ups and reports during this semester you will be required to collect and present data in an appropriate format. To organize and
CONSTRUCTING SINGLE-SUBJECT REVERSAL DESIGN GRAPHS USING MICROSOFT WORD : A COMPREHENSIVE TUTORIAL
CONSTRUCTING SINGLE-SUBJECT REVERSAL DESIGN GRAPHS USING MICROSOFT WORD : A COMPREHENSIVE TUTORIAL PATRICK GREHAN ADELPHI UNIVERSITY DANIEL J. MORAN MIDAMERICAN PSYCHOLOGICAL INSTITUTE This document is
Intro to GIS Winter 2011. Data Visualization Part I
Intro to GIS Winter 2011 Data Visualization Part I Cartographer Code of Ethics Always have a straightforward agenda and have a defining purpose or goal for each map Always strive to know your audience
Drawing a histogram using Excel
Drawing a histogram using Excel STEP 1: Examine the data to decide how many class intervals you need and what the class boundaries should be. (In an assignment you may be told what class boundaries to
EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.
EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your
GUIDELINES FOR PREPARING POSTERS USING POWERPOINT PRESENTATION SOFTWARE
Society for the Teaching of Psychology (APA Division 2) OFFICE OF TEACHING RESOURCES IN PSYCHOLOGY (OTRP) Department of Psychology, Georgia Southern University, P. O. Box 8041, Statesboro, GA 30460-8041
Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional.
Workspace tour Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional. In this tutorial, you will become familiar with the terminology and workspace
NIS-Elements: Using Regions of Interest (ROIs) & ROI Statistics
NIS-Elements: Using Regions of Interest (ROIs) & ROI Statistics Various ROI tools and functions NIS-Elements has several ROI functions designed for data analysis and image quantification. ROIs are a core
Contouring and Advanced Visualization
Contouring and Advanced Visualization Contouring Underlay your oneline with an image Geographic Data Views Auto-created geographic data visualization Emphasis of Display Objects Make specific objects standout
MultiExperiment Viewer Quickstart Guide
MultiExperiment Viewer Quickstart Guide Table of Contents: I. Preface - 2 II. Installing MeV - 2 III. Opening a Data Set - 2 IV. Filtering - 6 V. Clustering a. HCL - 8 b. K-means - 11 VI. Modules a. T-test
Lession: 2 Animation Tool: Synfig Card or Page based Icon and Event based Time based Pencil: Synfig Studio: Getting Started: Toolbox Canvas Panels
Lession: 2 Animation Tool: Synfig In previous chapter we learn Multimedia and basic building block of multimedia. To create a multimedia presentation using these building blocks we need application programs
Spatial Analysis with GeoDa Spatial Autocorrelation
Spatial Analysis with GeoDa Spatial Autocorrelation 1. Background GeoDa is a trademark of Luc Anselin. GeoDa is a collection of software tools designed for exploratory spatial data analysis (ESDA) based
Creating Forms with Acrobat 10
Creating Forms with Acrobat 10 Copyright 2013, Software Application Training, West Chester University. A member of the Pennsylvania State Systems of Higher Education. No portion of this document may be
Grade 6 Mathematics Performance Level Descriptors
Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this
Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
Instructions for Use. CyAn ADP. High-speed Analyzer. Summit 4.3. 0000050G June 2008. Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835
Instructions for Use CyAn ADP High-speed Analyzer Summit 4.3 0000050G June 2008 Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 Overview Summit software is a Windows based application that
How To Run Statistical Tests in Excel
How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting
Microsoft Excel 2010 Part 3: Advanced Excel
CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Microsoft Excel 2010 Part 3: Advanced Excel Winter 2015, Version 1.0 Table of Contents Introduction...2 Sorting Data...2 Sorting
Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller
Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize
Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs
Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships
GeoLytics. User Guide for Business Demographics & Historical Business Demographics
GeoLytics User Guide for Business Demographics & Historical Business Demographics Contents A. Installation 1 B. Introduction 2 C. Five Steps to Producing Files and Maps 2 1. Name your File 2 2. Select
How to use PGS: Basic Services Provision Map App
How to use PGS: Basic Services Provision Map App The PGS: Basic Services Provision Map App The main features of the PGP Basic Services web application includes: Navigation Tools Map Tools Main Map Links
Data source, type, and file naming convention
Exercise 1: Basic visualization of LiDAR Digital Elevation Models using ArcGIS Introduction This exercise covers activities associated with basic visualization of LiDAR Digital Elevation Models using ArcGIS.
Interactive Excel Spreadsheets:
Interactive Excel Spreadsheets: Constructing Visualization Tools to Enhance Your Learner-centered Math and Science Classroom Scott A. Sinex Department of Physical Sciences and Engineering Prince George
Tutorials. If you have any questions, comments, or suggestions about these lessons, don't hesitate to contact us at [email protected].
Tutorials The lesson schedules for these tutorials were installed when you installed Milestones Professional 2010. They can be accessed under File Open a File Lesson Chart. If you have any questions, comments,
MS Project Tutorial for Senior Design Using Microsoft Project to manage projects
MS Project Tutorial for Senior Design Using Microsoft Project to manage projects Overview: Project management is an important part of the senior design process. For the most part, teams manage projects
Introduction to the TI-Nspire CX
Introduction to the TI-Nspire CX Activity Overview: In this activity, you will become familiar with the layout of the TI-Nspire CX. Step 1: Locate the Touchpad. The Touchpad is used to navigate the cursor
GeoEditor User Manual
GeoEditor User Manual A tool for geological modelling and editing in GIS DHI Water & Environment October 2000 GeoEditor is a product made by the DHI in co-operation with the Geological Survey of Denmark
Project Setup and Data Management Tutorial
Project Setup and Heavy Construction Edition Version 1.20 Corporate Office Trimble Navigation Limited Engineering and Construction Division 5475 Kellenburger Road Dayton, Ohio 45424-1099 U.S.A. Phone:
GeoGebra Statistics and Probability
GeoGebra Statistics and Probability Project Maths Development Team 2013 www.projectmaths.ie Page 1 of 24 Index Activity Topic Page 1 Introduction GeoGebra Statistics 3 2 To calculate the Sum, Mean, Count,
Atomic Force Microscope and Magnetic Force Microscope Background Information
Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic
Lab 1: The metric system measurement of length and weight
Lab 1: The metric system measurement of length and weight Introduction The scientific community and the majority of nations throughout the world use the metric system to record quantities such as length,
Data Visualization Techniques and Practices Introduction to GIS Technology
Data Visualization Techniques and Practices Introduction to GIS Technology Michael Greene Advanced Analytics & Modeling, Deloitte Consulting LLP March 16 th, 2010 Antitrust Notice The Casualty Actuarial
Where On Earth Will Three Different Satellites Provide Simultaneous Coverage?
Where On Earth Will Three Different Satellites Provide Simultaneous Coverage? In this exercise you will use STK/Coverage to model and analyze the quality and quantity of coverage provided by the Earth
Appendix 2.1 Tabular and Graphical Methods Using Excel
Appendix 2.1 Tabular and Graphical Methods Using Excel 1 Appendix 2.1 Tabular and Graphical Methods Using Excel The instructions in this section begin by describing the entry of data into an Excel spreadsheet.
Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different)
Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different) Spreadsheets are computer programs that allow the user to enter and manipulate numbers. They are capable
CHARTS AND GRAPHS INTRODUCTION USING SPSS TO DRAW GRAPHS SPSS GRAPH OPTIONS CAG08
CHARTS AND GRAPHS INTRODUCTION SPSS and Excel each contain a number of options for producing what are sometimes known as business graphics - i.e. statistical charts and diagrams. This handout explores
MicroStrategy Desktop
MicroStrategy Desktop Quick Start Guide MicroStrategy Desktop is designed to enable business professionals like you to explore data, simply and without needing direct support from IT. 1 Import data from
MARS STUDENT IMAGING PROJECT
MARS STUDENT IMAGING PROJECT Data Analysis Practice Guide Mars Education Program Arizona State University Data Analysis Practice Guide This set of activities is designed to help you organize data you collect
SAS VISUAL ANALYTICS AN OVERVIEW OF POWERFUL DISCOVERY, ANALYSIS AND REPORTING
SAS VISUAL ANALYTICS AN OVERVIEW OF POWERFUL DISCOVERY, ANALYSIS AND REPORTING WELCOME TO SAS VISUAL ANALYTICS SAS Visual Analytics is a high-performance, in-memory solution for exploring massive amounts
DataPA OpenAnalytics End User Training
DataPA OpenAnalytics End User Training DataPA End User Training Lesson 1 Course Overview DataPA Chapter 1 Course Overview Introduction This course covers the skills required to use DataPA OpenAnalytics
WebSphere Business Monitor V6.2 Business space dashboards
Copyright IBM Corporation 2009 All rights reserved IBM WEBSPHERE BUSINESS MONITOR 6.2 LAB EXERCISE WebSphere Business Monitor V6.2 What this exercise is about... 2 Lab requirements... 2 What you should
Visual Tutorial Basic Edition 1. Visual. Basic Edition Tutorial. www.visuallightingsoftware.com
Visual Tutorial Basic Edition 1 Visual Basic Edition Tutorial www.visuallightingsoftware.com Visual Tutorial Basic Edition 2 Basic Edition Tutorial Introduction In this tutorial, you will use the Visual
Microsoft Excel 2013: Charts June 2014
Microsoft Excel 2013: Charts June 2014 Description We will focus on Excel features for graphs and charts. We will discuss multiple axes, formatting data, choosing chart type, adding notes and images, and
Spatial Adjustment Tools: The Tutorial
Spatial Adjustment Tools: The Tutorial By Peter Kasianchuk, ESRI Educational Services In this exercise, you will perform some spatial adjustment and data management operations data to be used in analysis
Open icon. The Select Layer To Add dialog opens. Click here to display
Mosaic Introduction This tour guide gives you the steps for mosaicking two or more image files to produce one image file. The mosaicking process works with rectified and/or calibrated images. Here, you
Integrated Company Analysis
Using Integrated Company Analysis Version 2.0 Zacks Investment Research, Inc. 2000 Manual Last Updated: 8/11/00 Contents Overview 3 Introduction...3 Guided Tour 4 Getting Started in ICA...4 Parts of ICA
