EVA (C/SCSC) and Basics of Project Control. Nathaniel Osgood 4/7/2004

Similar documents
Basics of Cost and Schedule Monitoring. Nathaniel Osgood 4/5/2004

Appendix A of Project Management. Appendix Table of Contents REFERENCES...761

technical tips and tricks

700 Analysis and Reporting

Earned Value. Valerie Colber, MBA, PMP, SCPM. Not for duplication nor distribution 1

An introduction to Earned Value Analysis

A Gentle Introduction to Earned Value Management Systems

Project Control. 1. Schedule Updating

Project Management Glossary

COINS EVA Earned Value Analysis

Brainstorm. What is Cost and Project Cost Management?

Basic Concepts of Earned Value Management (EVM)

PERCEPTION. Tracking Progress & EAC

Project Management: Tracking Progress and Earned Value with MS Project 2003

PROJECT TRACKING and CONTROL

Earned Value Formulae

Earned Value Management Tutorial Module 6: Metrics, Performance Measurements and Forecasting. Prepared by:

Introduction to earn value management in Civil Engineering

THE APPLICATION OF PERFORMANCE MEASUREMENT TECHNIQUE IN PROJECT MANAGEMENT : THE EARNED VALUE MANAGEMENT (EVM) APPROACH

Network Diagram Critical Path Method Programme Evaluation and Review Technique and Reducing Project Duration

PROJECT MANAGEMENT PLAN CHECKLIST

CHAPTER 8 PROJECT TIME-COST TRADE-OFF

March 30, 2007 CHAPTER 4

Basics of Cost and Schedule Control

Analysis and Application of Earned Value Management in Software Development

Unit 5: Cost Management (PMBOK Guide, Chapter 7)

Predicting progress on your project

Chapter 7: Project Cost Management. Munawar

CPM -100: Principles of Project Management

EARNED VALUE MANAGEMENT. CASE STUDY USING MICROSOFT PROJECT

Project Control System Manual. Jefferson Science Associates, LLC. 600 Progress Status. Project Control System Manual Revision

technical tips and tricks

MTAT Software Economics. Lecture 6: Software Cost Estimation (part II)

Forecasting Project Schedule Completion by Using Earned Value Metrics

CONVERTING TO PHYSICAL % COMPLETE METHOD OF EARNED VALUE IN MICROSOFT PROJECT

Earned Value Management Changes to the Glossary and Chapter 7 of the PMBOK Guide Third Edition.

INSE 6230 Total Quality Project Management

Estimating Cost at Completion - Judgment & EV Information

Earned Value Management (EVM) is a technique that is used to track the progress and status of a project and forecast its likely future performance.

BEYOND EARNED VALUE: A Better Practice for Monitoring Project Performance 2012 Dr. Kenneth F. Smith, PMP ; Project Management Consultant

Scheduling Glossary Activity. A component of work performed during the course of a project.

The work breakdown structure can be illustrated in a block diagram:

Project Management Using Earned Value

Essential Views of the Integrated Program Management Reports. Thomas J. Coonce Glen B. Alleman

How To Manage A Project

AACE International Recommended Practice No. 86R 14

Procurement Management S# What? Formula Additional Notes CPPC CPFF CPAF CPIF T&M FPEPA FPAF FPIF FFP

Applied Project Management ( APM )

Chapter 2: Project Time Management

CLARITY PPM TIPS, TRICKS, and TERMINOLOGY

Project Time Management

Comparative Study for Software Project Management Approaches and Change Management in the Project Monitoring & Controlling

LEADING EDGE FORUM CSC PAPERS 2012 EARNED SCHEDULE: FROM EMERGING PRACTICE TO PRACTICAL APPLICATION

Project Management Chapter 3

L10: Budgeting and Cost Control. Olivier de Weck

PMP SAMPLE QUESTIONS BASED ON PMBOK 5TH EDITION

Earned Value and Agile Reporting

Project Scheduling: PERT/CPM

Pune, MH, India. 2 P.G. Student, Imperial College of Engineering & Research, Wagholi, Pune, MH, India. wit.vaishnavi@gmail.com

Scheduling. Anne Banks Pidduck Adapted from John Musser

1 Aggregate Production Planning

Selftestengine..PMI-SP.270 questions PMI-SP. PMI Scheduling Professional

PMBOK GLOSSARY. Activity Duration Estimating. Estimating the number of work periods which will be needed to complete individual activities.

Integrated Time and Cost Management System for Project Monitoring, Evaluation and Control

State of Michigan (SOM) August Department of Technology, Management & Budget

300 Scheduling and Budgeting

Project Control with ProTrack

Collaborative Scheduling using the CPM Method

IQPC IT Project Management Conference Sydney Recent Advances in Project Prediction Techniques

Earned Value Exercise. Su-Cheng Wu. MET AD 644: Project Risk, and Cost Management. Paul B. Cook, PhD PMP

Cash flow is the life line of a business. Many start-up

Module 5 Cost Management PMP Exam Questions

PROJECT TIME MANAGEMENT

Project Scheduling: PERT/CPM

VIII. Project Management Glossary

PMP SAMPLE QUESTIONS BASED ON PMBOK 5TH EDITION

Project Cost Management

DATA ITEM DESCRIPTION Title: Integrated Program Management Report (IPMR) Number: DI-MGMT Approval Date:

Lecture Slides for Managing and Leading Software Projects. Chapter 8: Measuring and Controlling Work Processes

Time Management. Part 5 Schedule Development. Richard Boser

Lecture 26 CPM / PERT Network Diagram

Project Execution - PM Elements

FERMI RESEARCH ALLIANCE PROCEDURES PROJECT MANAGEMENT. Head, Office of Project Management Oversight

Project Time Management an essential element to project success

Appendix D Glossary Of Terms

Contract Cash Flow & Performance Analysis. PERCEPTION Helping The Shipyard Stay On Budget

PROJECT SCHEDULING AND TRACKING

Introduction to Project Management

EVM.01. Earned Value Analysis Why it Doesn't Work

Earned value method as a tool for project control

pm4dev, 2008 management for development series Project Budget Management PROJECT MANAGEMENT FOR DEVELOPMENT ORGANIZATIONS

Simple Earned Value (Using MS Project 2010)

CHAPTER 8 Planning and Budgeting

Earned Value Analysis Exercise

This EVMS Training Snippet sponsored by the Office of Acquisition and Project Management (OAPM) covers Firm Fixed Price (or FFP type) subcontracts.

Schedule Compression

CONTRACTOR DEFAULT & SURETY PERFORMANCE:

WORK PROGRAM GUIDELINES

CRITICAL PATH METHOD (CPM) SCHEDULES

PMP Exam Preparation Answer Key

Transcription:

EVA (C/SCSC) and Basics of Project Control Nathaniel Osgood 4/7/2004

Topics Monitoring cont d EVA (C/SCSC) Definitions and examples Forecasting Project Control General Performance-adjustments adjustments Target Adjustments Problem diagnosis

Recall: Earned Value Approach (Cost/Schedule Control Systems Criteria) Definitions Integrating cost, schedule, and work performed by ascribing monetary values to each. Budgeted Cost of Work Scheduled (BCWS, $) ( Earned value of work accomplished ) the value of work scheduled to be accomplished in a given period of time. Actual Cost of Work Performed (ACWP, $): the costs actually incurred in accomplishing the work performed within the control time. Budgeted Cost of Work Performed (BCWP, $): the monetary value of the work actually performed within the control time (= Earned Value). Actual Time of Work Performed (ATWP, time) Schedule Time of Work Performed (STWP, time)

Cost Variance Is project spending more or less money than anticipated for the work that I did? Cost Variance (CV = BCWP - ACWP) + (Underrun( Underrun); - (Overrun); 0 (On Budget) Cost Index (CI = BCWP/ACWP) > 1 (Underrun( Underrun); < 1 (Overrun); 1 (On Budget)

Schedule Variance One metric for judging if project making is progressing faster or slower than expected More precisely: How does the value of the work I have actually performed compare to the work I anticipated performing during this time? Progress here is measured in value of the work ($)( Calculated in $ -- but here this is a proxy for value Schedule Variance (SV = BCWP - BCWS) + (Ahead); - (Behind); 0 (On Schedule) Even if just slightly ahead/behind in time, may be large if working on very expensive component of project Schedule Index (SI = BCWP/BCWS) > 1 (Ahead); < 1 (Behind); 1 (On Schedule)

Time Variance Is project spending more or less time than anticipated for the work that I did? Measured in units of time May be very close even if big difference in the resource spending Time Variance (TV = STWP - ATWP) + (Ahead); - (Delay); 0 (On Schedule) Time Index (TI = STWP / ATWP) > 1 (Ahead); < 1 (Delay); 1 (On Schedule) i

Resource Flow Variance Compares how much expecting to spend during this timeframe with what actually spent regardless of how much work got done. Warning: Doesn t indicate bad or good. e.g. = if Going faster but more cheaply than expected Going slower but more expensively than expected (RV = BCWS - ACWP) Resource Flow Variance (RV = BCWS + (Underrun( Underrun); - (Overrun); 0 (On Target) Resource Flow Index (RI = BCWS / ACWP) > 1 (Underrun( Underrun); < 1 (Overrun); 1 (On Target)

Earned Value Chart

Example: Gantt Chart Schedule ACTIVITY A B C D E F G 0 5 10 15 20 25 WEEKS Non Critical Path Activity Critical Path Activity

Example: Traditional Reporting

Example: Earned Value Reporting

Example: Activity Analysis

Example: Variances ACTIVITY BCWP - ACWP = CV A $ 1,500 - $ 1,500 = $ 0 B $ 3,000 - $ 3,000 = $ 0 E $ 1,628 - $ 2,900 = -$ 1,272 CUMULATIVE VARIANCE = -$ 1,272 ACTIVITY BCWP - BCWS = SV A $ 1,500 - $ 1,200 = $ 300 B $ 3,000 - $ 3,000 = $ 0 E $ 1,628 - $ 3,256 = -$ 1,628 CUMULATIVE VARIANCE = -$ 1,328

Variances II ACTIVITY STWP - ATWP = TV A 5-4 = 1 B 3-4= -1 E 2-4= -2 Cumulative Variance = -2

Example: Activity Indexes BCWP BCWP Activity = SI = CI BCWS ACWP 1,500 1,500 A = 1.25 = 1 1,200 1,500 3,000 3,000 B = 1 = 1 3,000 3,000 1,628 1,628 E = 0.5 = 0.56 3,256 2,900

Example: Project Indexes The Aggregate Cost Index is: 1,500 + 3,000 + 1,628 SI = = 0.82 1,200 + 3,000 + 3,256 CI = = 0.83 1,500 + 3,000 + 1,628 1,500 + 3,000 + 2,900

Example: Earned Value Reporting Values (in Dollars) of BCWS, BCWP, and ACWP for Weeks 1-4 Week 1 Week 2 Week 3 Week 4 Activity BCWS BCWP ACWP BCWS BCWP ACWP BCWS BCWP ACWP BCWS BCWP ACWP A 300 500 500 300 500 500 300 300 300 300 200 200 B 1,000 1,000 1,000 1,000 1,000 1,000 1,000 500 500 0 500 500 E 814 300 814 814 400 686 814 500 1,000 814 428 400 2,114 1,800 2,314 2,114 1,900 2,186 2,114 1,300 1,800 1,114 1,128 1,100

Example: Earned Value Analysis

Example: Schedule and Cost Index Schedule Index for the Project Cost Index for the Project Schedule index, SI 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.88 0.85 0.82 0.79 1 2 3 4 Week Cost Index, CI 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.78 0.82 1 2 Week 0.79 0.83 3 4

Example: Integrating CI and SI

Topics Monitoring cont d EVA (C/SCSC) Definitions and examples Forecasting Project Control General Performance-adjustments adjustments Target Adjustments Problem diagnosis

Forecasting Performance Critical in the performance analysis process, since it can be used to identify future performance variances and design the project control process in advance of facing real performance problems Attempts to predict the conditions at a later time or the end of the project Typically made repeatedly on a regular basis throughout a project

Forecasting Completion Dates Forecasted completion date = Current date + (Work remaining / Expected work rate) Expected work rate = Expected productivity* Workers Expected productivity = [Work accomplished / Workers] / Time spent

Forecasting Total Costs Forecasted total cost = Cost spent + (Work remaining * Expected unit cost) Expected unit cost = Costs spent / Work accomplished

Cost Updating Budget at Completion BAC = Sum BCWS on lower-level level OBS BAC = Sum BCWS on lower-level level WBS Work Remaining WR = BAC BCWP Estimate to Complete ETC = Update cost for Work remaining Estimate at Completion EAC = BAC - CV or BAC / CI

EAC Original Estimate Approach Estimate at Completion: EAC = ACWP + ETC Estimate to Complete: ETC = BAC - BCWP EAC = ACWP + (BAC - BCWP) EAC = BAC - (BCWP - ACWP) EAC = BAC - CV

EAC Revise Estimate Approach ACWP / BCWP = 1 / CI ETC = WR * 1 / CI ETC = (BAC - BCWP) * 1 / CI EAC = ACWP + (BAC - BCWP) * 1 / CI EAC = ACWP + (BAC / CI) - (BCWP / CI) ACWP = BCWP / CI EAC = BAC / CI EAC = BAC * ACWP / BCWP

Example (after a month) BCWS = $7,456 BCWP = $6,128 ACWP = $7,400 Original Estimate Approach EAC CV = $1,272 SV = $1,328 CI = 0.83 SI = 0.82 = ACWP + BAC - BCWP = BAC -CV = $31,000 - (- $1,272) = $32,272 Revised Estimate Approach EAC = BAC / CI = $31,000 / 0.83 = $37,349

Beware of Delays Financial, time indicators are necessary but not sufficient to alert to problems In most cases of serious problems and normal reporting, the problem may be very serious by the time that it is noticed in the formal reports Rapid qualitative judgment is often much more effective than delayed quantitative reporting

Topics Monitoring cont d EVA (C/SCSC) Definitions and examples Forecasting Project Control General Performance-adjustments adjustments Target Adjustments Problem diagnosis

Project Control: Managing Risks Monitoring alerts us to when there s a problem Key elements of control Problem diagnosis (discussed later) Either Plan correction (often political process) Problem correction (often technical & managerial) All of the above must be undertaken rapidly to effectively control a project Need to see if they correct the problem and react accordingly Control without rapid monitoring highly handicapped

Value of Flexibility Flexibility is primary defense against risk Planning too tightly may highly complicate control Already Discussed: Flexibility value to the owner (Expandability via clearspanning,, larger # conduits, Flexibility in construction is key during control Want enough give to change plans if necessary Usual tradeoff: Overoptimizing for cost can limit flexibility E.g. Equipment, materials, personnel Be careful on value engineering that limits flexibility!

The Project Control Process Initial Targets Project Targets Forecasting Forecasted Performance Performance Test Performance Targets Target Changes Measured Performance Error Signal Descriptors Performance Deficits and Surpluses Error Signals Target-Driven Control Loop Performance-Driven Control Loop Control Actions Project Changes Project Performance

Topics Monitoring cont d EVA (C/SCSC) Definitions and examples Forecasting Project Control General Performance-adjustments adjustments Target Adjustments Problem diagnosis

Performance-Driven Control Project Targets Forecasting Forecasted Performance Performance Test Performance Targets Measured Performance Error Signal Descriptors Performance Deficits and Surpluses Error Signals Performance-Driven Control Loop Control Actions Project Changes Project Performance

Performance Driven Control Planned Versus Actual Expenditures on a Project 100% Planned Expenditure PROJECT TIME (%) 80% 60% 40% Actual Expenditure Revised Estimate of Future Expenditure 20% 0% 0% 20% 40% 60% 80% 100% BUDGETED EXPENDITURE (%)

Performance-Driven Control Methods Awkward fact: Can typically only correct for one attribute of a problem at a time Time Cost Quality Need to understand tradeoffs and triage Most easy wins will already be in place Exception: Sometimes new information is available that can enable improved performance now

Acceleration $ (Overtime, shift work, Rework, higher-end equipment, better crews etc.) Slow progress $ Delayed occupation, Higher interest on const. loan Loss of tenants Opportunity cost Schedule Attribute Linkages $ Cost Schedule Difficulty in getting financing Trying to save $ Default of parties Can lead to substitution, Suspension of work lower quality Selection of poor quality workers workmanship Quality level impacts speed of work, Level of rework Need for rework imposes high expenses High quality needs can lead to costly miscalculations on labor time Quality Quality problems result from overtime, shift work, new hires

Caveats on Overreacting When trying to correct, often bump up against other limiting factors Space constraints Skill set breadth Hiring time Morale Coordination difficulties Often improvisation can lead to Confusion Cascading unanticipated effects Job rhythm and learning curves make big difference!

Schedule Performance Control Project managers can use resources to increase work rate mainly in two ways: 1) adding new project resources (eg( eg., Schedule Crashing) and 2) reallocating available resources (eg( eg., Linear Scheduling Method ),

Schedule Performance Control Change operating conditions by altering the location of the work Change operation conditions by altering the precedence, sequence, or timing of work Change the technology used Changes in the tools and methods

Project Acceleration I Multiple-shift work Lack of coordination Hiring Environmental/safety constraints Overtime/Extended workdays Fatigue Lower morale Rework

Project Acceleration II Using larger or more productive equipment Training/learning curve Procurement time Space constraints Increasing # of workers Training (takes time of most experienced!) Space constraints Hiring time Lack of knowledge of processes

Project Acceleration III Using faster-installing materials Procurement Alternate construction methods Skill set Learning curve Unknown side-effects effects

Project Acceleration IV Summon on-call contractor Learning curve Friction between teams Unknown personality situation

Activity Time-Cost Tradeoffs Frequently we have a tradeoff b.t.. $ and time Time is money Can finish more rapidly if have More highly skilled labor More expensive equipment More workmen More highly paid (motivated!) labor

Project Time-Cost Tradeoff 25 Project Time-Cost Trade-off Curve 20 ($) 15 10 5 project penalty Overhead Total 0 1 2 3 4 5 6 7 8 9 10 Total cost is non-monotonic: Sometimes using less time globally NOTE: If activity time-cost curves are linear, then finding the optimal z

Link to Earlier Topic: Resource Scheduling Recall: Earlier we discussed some resource time tradeoffs Resource leveling Resource scheduling At that time, we considered activity atomic: We did not consider changing activity durations/resource use profiles Time-curves often serve as a proxy for intra- activity resource reasoning

Time-Cost Tradeoffs: Key Concepts Two components (either or both) Reduce duration for activities on critical path Try to increase $ as little as possible in process! Reduce costs on activities not on critical path Often involves increasing duration but want to keep off Critical path! Explicit activity time-costs tradeoffs examine direct, local activity costs only Ignore (important) indirect costs of project extension These are global costs that depend on the entire project duration rather than activity duration

Time-Cost Trade Off Curve A single Activity trade off curve: Time-Cost Trade-off Curve ($) 20 18 16 14 12 10 8 6 4 2 0 Time Normal Duration What duration would you choose?

Trading Money Money for Time Activity Crashing Critical path tells us time-limiting activities No benefit from reducing time of all activities up front just those on critical path NB: This is an important area in which CPM has contributed to construction understanding Previously, many managers put effort into accelerating whole project Critical path may change as crashing changes activity durations

Time-Cost Algorithms If activity time-cost curves are linear, then finding the optimal duration of the project is a linear program (LP). If not, then it is an NLP. Common assumptions Time-Cost tradeoff is convex No binding resource constraints Normal activity cost is lowest-cost point

Kelly & Walker Crashing Heuristic 1. Solve CPM with normal durations 2. For critical activities: Find marginal cost of crashing (i.e., additional cost of shortening duration 1 time unit) 3. Reduce by one time step the critical activity with the lowest marginal cost of crashing 4. Record resulting activity project duration and cost 5. Repeat [3] until another path becomes critical. 6. Repeat [1] until project cost increases. NOTE: Good, but not necessarily optimal solutions Problems? Concerns?

Issues with Heuristic What about resource constraints? If our preferences were determined partly by resource constraints, we are no longer guaranteed to have a legal schedule! The resulting schedule could have highly irregular (and thus costly) resource use Number of nodes multiples as more detailed cost tradeoffs required Monotonically decreasing but non-convex time- cost curves require different algorithm

Cost Performance Control Resource use, allocation again central Effective and timely cost control is crucial to ensuring the project cost performance. It should be an on-going process, taking into consideration the following: Change resources to remove excess capacity Change operating conditions to increase work efficiency and product quality Change methods by outsourcing different operations Re-price the work, equipment, or materials Substitute with less expensive but acceptable materials or equipment

Adapted from Pena-Mora 2003 Trading Time Time for Money Slack Management Remember: Time imposes extra indirect costs! Slack Management : when budget is limited during a certain time period, rescheduling the project by changing activity timing and associated expenditure or income. Activity Timing Change: Non-critical activities first (having FF -> > TF), then critical activities. Activities having Free Float Activities having Total Float Activities on Critical path

Recall: Resource Leveling Insight: a more steady usage of resources leads to lower resource costs. Labor: costs associated with hire, fire, and training Material: storage requirement, planning and controlling efforts Resource Leveling : the reallocation of slack (TF or FF) in non-critical activities to minimize fluctuations in the resource requirement profile.

Topics Monitoring cont d EVA (C/SCSC) Definitions and examples Forecasting Project Control General Performance-adjustments adjustments Target Adjustments Problem diagnosis

Target-Driven Control: More Political Process Initial Targets Project Targets Forecasting Forecasted Performance Performance Test Performance Targets Target Changes Measured Performance Error Signal Descriptors Performance Deficits and Surpluses Error Signals Target-Driven Control Loop Performance-Driven Control Loop Control Actions Project Changes Project Performance

Topics Monitoring cont d EVA (C/SCSC) Definitions and examples Forecasting Project Control General Performance-adjustments adjustments Target Adjustments Problem diagnosis