Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115



Similar documents
ph: Measurement and Uses

Acid Base Titrations

Lab #10 How much Acetic Acid (%) is in Vinegar?

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

EXPERIMENT 10: TITRATION AND STANDARDIZATION

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Experiment 7: Titration of an Antacid

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

The Determination of Acid Content in Vinegar

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

Analyzing the Acid in Vinegar

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS

Determination of Citric Acid in Powdered Drink Mixes

TITRATION OF VITAMIN C

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

CHM1 Review for Exam 12

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

AP FREE RESPONSE QUESTIONS ACIDS/BASES

Name period Unit 9: acid/base equilibrium

Chem101: General Chemistry Lecture 9 Acids and Bases

UNIT (6) ACIDS AND BASES

Properties of Acids and Bases

Determining the Identity of an Unknown Weak Acid

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1

Topic 18 Acids and Bases Exercises

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

Phenolphthalein-NaOH Kinetics

Calcium Analysis by EDTA Titration

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

Juice Titration. Background. Acid/Base Titration

Chapter 10 Acid-Base titrations Problems 1, 2, 5, 7, 13, 16, 18, 21, 25

Experiment 17: Potentiometric Titration

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1

Auto-ionization of Water

Chemistry 52. Reacts with active metals to produce hydrogen gas. Have a slippery, soapy feeling. React with carbonates to produce CO 2

Chemistry 111 Laboratory Experiment 8: Stoichiometry in Solution Standardization of Sodium Hydroxide

Chemical Reactions in Water Ron Robertson

Acid/base Definitions. Acid/Base Definitions. Acid / Base Chemistry. Acid/Base Definitions. Identifying Acids and Bases

Practical Lesson No 4 TITRATIONS

Determination of Aspirin using Back Titration

Acids and Bases. Chapter 16

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases

TOPIC 11: Acids and Bases

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations

3 The Preparation of Buffers at Desired ph

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

stoichiometry = the numerical relationships between chemical amounts in a reaction.

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

LESSON ASSIGNMENT. After completing this lesson, you should be able to: 7-1. Solve basic titration problems.

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY

Acid-Base Titrations Using ph Measurements

Neutralizing an Acid and a Base

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

n molarity = M = N.B.: n = litres (solution)

4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H O 2 10H 2 O + 8CO 2

Coordination Compounds with Copper (II) Prelab (Week 2)

Chemical equilibria Buffer solutions

Topic 8 Acids and bases 6 hours

Chapter 14 - Acids and Bases

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

9. Analysis of an Acid-Base Titration Curve: The Gran Plot

Titration curves. Strong Acid-Strong Base Titrations

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

Electrical Conductivity of Aqueous Solutions

GA/7 Potentiometric Titration

Element of same atomic number, but different atomic mass o Example: Hydrogen

Additional Lecture: TITRATION BASICS

IB Chemistry. DP Chemistry Review

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Experiment 6 Titration II Acid Dissociation Constant

PERCENT ACETIC ACID IN VINEGAR EXPERIMENT 15

Carolina s Solution Preparation Manual

1. Read P , P & P ; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

Analysis of Vitamin C Using Iodine. Introduction

Acid Dissociation Constants and the Titration of a Weak Acid

FAJANS DETERMINATION OF CHLORIDE

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS

Determination of calcium by Standardized EDTA Solution

Determination of a Chemical Formula

Aqueous Chemical Reactions

Stoichiometry and Aqueous Reactions (Chapter 4)

Formulas, Equations and Moles

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Transcription:

Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate the molar concentration of a strong acid (HCl) HOW? Through titration

Techniques Titration Need reproducible results 3 trials are performed (3 titrations) Accuracy is important

Lab Outline The concentration of a sodium hydroxide will be determined by titration with potassium hydrogen phthalate, (KHC 8 H 4 O 4 = KHP) Using the determined concentration of your sodium hydroxide solution, this will be titrated with a HCl solution to calculate its concentration.

Points to Note Your solution of sodium hydroxide will be pre-made. Page 111, Preparing a stock solution does not need to be performed. Your sample of KHP are already dried.

Introduction Titration is a common method of determining the amount or concentration of an unknown substance. The method is easy to use if the quantitative relationship between two reacting solutions is known. The method is particularly well-suited to acid-base and oxidation-reduction reactions. Titrations are routinely used in industry to analyze products to be sold. Many manufacturers are under strict standards of quality control because their products are sold for public consumption.

Background In a titration a solution of one reactant (the titrant) is added to a measure amount of a second reactant. One of these reactants is called a standard (known concentration or molar mass) and the other is unknown (reactant). A color change (or some distinctive change) occurs when enough titrant has been added to consume all the reactant in the analyte. In this acid-base titration we make use of the general reaction: OH - + HA H 2 O + A -

What is an acid-base indicator? An acid-base indicator is a weak acid or a weak base. The undissociated form of the indicator is a different color than the associated form of the indicator. An Indicator does not change color from pure acid to pure alkaline at specific hydrogen ion concentration, but rather, color change occurs over a range of hydrogen ion concentrations. This range is termed the color change interval. It is expressed as a ph range.

How is an indicator used? Weak acids are titrated in the presence of indicators which change under slightly alkaline conditions. Weak bases should be titrated in the presence of indicators which change under slightly acidic conditions

Background Information Arrhenius Acids acids produce H + ions in aqueous solutions bases produce OH - ions in aqueous solutions water required, so only allows for aqueous solutions only protic acids are allowed; required to produce hydrogen ions only hydroxide bases are allowed

Brønsted Lowry Acids acids are proton donors bases are proton acceptors aqueous solutions are permissible bases besides hydroxides are permissible only protic acids are allowed Lewis Definition acids are electron pair acceptors bases are electron pair donors least restrictive of acid-base definitions

The equivalence point of a titration When you carry out a simple acid-base titration, you use an indicator to tell you when you have the acid and alkali mixed in exactly the right proportions to "neutralise" each other. When the indicator changes color, this is often described as the end point of the titration. In an ideal world, the color change would happen when you mix the two solutions together in exactly equation proportions. That particular mixture is known as the equivalence point.

Example If you were titrating sodium hydroxide solution with hydrochloric acid, both with a concentration of 1 mol dm -3, 25 cm 3 of sodium hydroxide solution would need exactly the same volume of the acid - because they react 1 : 1 according to the equation. In this particular instance, this would also be the neutral point of the titration, because sodium chloride solution has a ph of 7.

This is not necessarily true of all the salts you might get formed. If you titrate ammonia solution with hydrochloric acid, you would get ammonium chloride formed. The ammonium ion is slightly acidic, and so pure ammonium chloride has a slightly acidic ph. That means that at the equivalence point (where you had mixed the solutions in the correct proportions according to the equation), the solution wouldn't actually be neutral. To use the term "neutral point" in this context would be misleading.

Similarly: If you titrate sodium hydroxide solution with ethanoic acid, at the equivalence point the pure sodium ethanoate formed has a slightly alkaline ph because the ethanoate ion is slightly basic. NaOH + CH 3 COOH CH 3 COONa + H 2 O

The term "neutral point" is best avoided. The term "equivalence point" means that the solutions have been mixed in exactly the right proportions according to the equation. The term "end point" is where the indicator changes color, and this isn't necessarily exactly the same as the equivalence point.

Titration curves for strong acid v strong base HCl and NaOH are typical strong acid and strong base. Running acid into the alkali You can see that the ph only falls a very small amount until quite near the equivalence point. Then there is a really steep plunge. If you calculate the values, the ph falls all the way from 11.3 when you have added 24.9 cm 3 to 2.7 when you have added 25.1 cm 3.

Alkali to Acid Titration This is very similar to the previous curve except, of course, that the ph starts off low and increases as you add more sodium hydroxide solution.

Strong Acids and Bases Don't confuse the words strong and weak with the terms concentrated and dilute. The strength of an acid is related to the proportion of it which has reacted with water to produce ions. The concentration tells you about how much of the original acid is dissolved in the solution. It is perfectly possible to have a concentrated solution of a weak acid, or a dilute solution of a strong acid.

Strong Acids and ph ph is a measure of the concentration of hydrogen ions in a solution. Strong acids like hydrochloric acid at the sort of concentrations you normally use in the lab have a ph around 0 to 1. The lower the ph, the higher the concentration of hydrogen ions in the solution

Defining ph

Example If you had to work out the ph of 0.1 mol dm -3 hydrochloric acid. All you have to do is work out the concentration of the hydrogen ions in the solution, and then use your calculator to convert it to a ph. With strong acids this is easy. Hydrochloric acid is a strong acid - virtually 100% ionised. Each mole of HCl reacts with the water to give 1 mole of hydrogen ions and 1 mole of chloride ions

That means that if the concentration of the acid is 0.1 mol dm -3, then the concentration of hydrogen ions is also 0.1 mol dm -3. Use your calculator to convert this into ph. My calculator wants me to enter 0.1, and then press the "log" button. Yours might want you to do it in a different order. You need to find out! log 10 [0.1] = -1 But ph = - log 10 [0.1] - (-1) = 1 The ph of this acid is 1.

Standardization of NaOH A standard solution is one in which the concentration is known accurately. A standard solution of NaOH will be prepared. One way to prepare a standard solution is to dissolve an accurately massed amount of the substance and dilute it to a measured volume In this way, the concentration can be calculated exactly. Molarity = No of moles / Vol in liters

NaOH Standardization It is usually impossible to obtain NaOH of sufficient purity to use it as a primary standard. Why? Sodium Hydroxide is hygroscopic (picks up water from the air) An indirect method is more practical for obtaining a standard solution of NaOH. A solution of a approximate molarity will be prepared and standardized against a primary standard of known purity.

What is a primary standard? A sample that is of high purity Remain unchanged in air during massing and remain stable during storage Have a high molar mass to reduce massing errors React with the solution to be standardized in a direct, well-defined reaction

Potassium acid phthalate will serve as our primary standard. This is a large molecule (KHC 8 H 4 O 4 ) with a molar mass of 204.2 g/mol. Instead of writing the whole formula, it can be abbreviated as KHP, where "P" stands for the phthalate ion, C 8 H 4 O 4 2-, not for phosphorus. KHP is an acidic substance, with the ionizing hydrogen being set forward in the formula for emphasis. Therefore, KHP is monoprotic and will react with NaOH in a simple 1 to 1 relationship.

NaOH(aq) + KHC 8 H 4 O 4 (aq) KNaC 8 H 4 O 4 (aq) + H 2 O(l) The ionic equation is: Na + (aq) + OH - (aq) + K + (aq) + HC 8 H 4 O 4- (aq) Na + (aq) + K + (aq) + H 2 O(l) + C 8 H 4 O 4 2- (aq) If the spectator ions (Na +, K + ) are removed: OH - (aq) + HC 8 H 4 O 4- (aq) H 2 O(l) + C 8 H 4 O 4 2- (aq) This allows the following equation which applies at the endpoint* of the titration: Moles acid used = Moles base used

Equivalence and End Points OH - + HA H 2 O + A - The equivalence point is when equal moles of OH- have been added to HA because they react in a 1:1 ratio This can be difficult to determine, and instead use the end point Near the equivalence point of an acid base titration, the ph of the solution changes rapidly with relative amounts of HA and OH -, and this changes the color of the indicator As the end point is approached a color change will be observed when 1 drop of titrant hits the analyte Try to reach the point where addition of 1 drop of titrant causes a permanent color change (> 10 secs) after swirling

Procedure The base (NaOH) will be standardized with KHP. This standard base will be used to standardize the acid so that the exact concentrations of both solutions will be known and can then easily titrate and analyze unknowns.

Procedure You will be given a solution of 0.1xx M NaOH. This will be your titrant. Rinse a buret with water and then with a small amount of the NaOH solution. Fill the buret with NaOH solution. Fill the buret tip by momentarily opening the stopcock. Read the initial volume. Accurately weigh approx. 0.8xx g of KHP into a 250 ml Erlenmeyer flask. Add about 100 ml of water and swirl the flask until the sample is dissolved. Add 3 drops of phenolphthalein indicator (colorless in acidic solution; pink in basic solution).

Titrate the KHP solution with the base solution to be standardized. Titration should proceed until the faintest pink persists for 30 sec. after swirling. The color will fade upon exposure to the air (WHY?) After completing a trial, breathe into the flask and swirl. What has happened? Make duplicate determinations and calculate the average molarity of the NaOH. For excellent work, the molarities need to be within 1% of one another.

Analysis of an Unknown Acid Obtain an unknown acid and perform 3 titrations You substitute your acid for KHP Check for precision of these titrations

Data (for each trial): Mass of KHP in sample flask Initial buret reading Final buret reading Volume of NaOH required to neutralize the KHP

Experimental Techniques Near the endpoint of the titration, you may want to add a fraction of a drop instead of a whole drop. To do this, let a little droplet grow out on the tip of the buret. Then wash it into the flask with a squirt of distilled water from your wash bottle

You will know when you are getting close to the endpoint because addition of a small amount of NaOH (as little as a drop) will produce a pink color that will take a long time to fade as the flask is swirled. You have reached the endpoint of the titration when addition of one drop or less of solution causes the solution in the flask to turn pink and stay pink for 10 seconds or longer.

Once the endpoint has been reached, read the final volume off of the buret. Here a volume of 42.5mls is read The volume of NaOH solution added to the flask is simply the final volume reading minus the initial volume reading.

Example Calculation Let's assume that we started with 0.700 g of KHP and it took 39.08 ml of NaOH to reach the endpoint, what value of [NaOH] do you get from this equation? I get a value of 0.08771 M. (Note: These numbers are totally bogus. When you do the experiment use your actual numbers for this calculation).

Example 2 In a titration 23.25mls of NaOH, 0.125M was needed to react with 21.45 mls HCl. What is the molarity of the acid?

Example 3 If 250mls of a 0.1M NaOH solution was required. How many grams would need to be weighed?

More Examples Calculate the molarity of a solution prepared by dissolving 4g NaOH in 100mls of solution? If 25mls of a 0.56M H2SO4 solution is diluted to a volume of 125mls. What is the molarity of the resulting solution?

Clean Up Dispose of excess NaOH solution in the surplus NaOH bottle in the hood Dispose of excess acidic solutions in correctly labeled bottle Rinse the buret thoroughly with deionized water and place upside down in buret clamp Wipe down benches Put away equipment