PGA103+ Low noise, high dynamic range preamp for VHF and UHF



Similar documents
PGA103+ Low noise, high dynamic range preamp for VHF and UHF

Assembly Instructions: Shortwave Radio Kit

A CW QRP Transceiver for 20 m band. How it works I'll describe individually the three boards and the relative tuning devices.

Application Note No. 143

Single Transistor FM Transmitter Design

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

HP 8970B Option 020. Service Manual Supplement

FILTERS - IN RADIO COMMUNICATIONS

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)

Embedded FM/TV Antenna System

Cheap Antennas for the AMSAT LEO's Kent Britain -- WA5VJB

LOW LOSS CABLE PAG. 1

Application Note SAW-Components

Capacitor Self-Resonance

Clamp Filters that Suppress Emission Noise Provide Immunity Against Surge Noise

Cumbria Designs T-1. SSB/CW Filter kit (4.9152MHz) User Manual

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz

DL-QRP-AG Lambda/2 no Counterpoise: Fuchs Antenna matching unit

AN BGU8009 Matching Options for 850 MHz / 2400 MHz Jammer Immunity. Document information. Keywords

TEMPLE AUDIO BANTAM - 2X15W INTEGRATED CLASS T AMPLIFIER SPECIFICATION 2.0

Modifying the Yaesu FT-847 External MHz Reference Input

Pillbox Antenna for 5.6 GHz Band Dragoslav Dobričić, YU1AW

Kit Watt Audio Amplifier

RX-AM4SF Receiver. Pin-out. Connections

Digital Active Indoor Antenna SRT ANT 10 ECO

Simple Broadband Solid-State Power Amplifiers

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX

VJ 6040 Mobile Digital TV UHF Antenna Evaluation Board

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term

THE R551N RECEIVER FAQ FAULT FINDING THE REDIFON COMMUNICATIONS RECEIVER R551N. Date: October 10th 1995 by: Jan Verduyn G5BBL

"FP", "FR", "FQ" Series Bandpass Filters

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

DDS VFO CONSTRUCTION MANUAL. DDS VFO Construction Manual Issue 1 Page 1

Yaesu FT MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands

Monolithic Amplifier PMA2-43LN+ Ultra Low Noise, High IP3. 50Ω 1.1 to 4.0 GHz. The Big Deal

G4HUP Panoramic Adaptor Installation FT847

Coaxial Cable Feeder Influence on Yagi Antenna Dragoslav Dobričić, YU1AW

Homebuilt HF Radios for Use Underground Paul R. Jorgenson KE7HR

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX

TEACHING RESOURCES SCHEMES OF WORK DEVELOPING A SPECIFICATION COMPONENT FACTSHEETS HOW TO SOLDER GUIDE GET IN TUNE WITH THIS FM RADIO KIT. Version 2.

SPECIFICATION. MAT.03A Embedded Active GPS and Cellular Antenna Assembly and Reference Board

SUPER SNOOPER BIG EAR

Oscillators. 2.0 RF Sine Wave Oscillators. Module. RF Oscillators

RF and Microwave Accessories. CD-ROM Catalog. Find the right component for your Rohde & Schwarz test & measurement equipment

Wideband Active Loop Antenna Amplifier with Passive Augmentation

Yaesu FT mhz Pre-amplifier

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications

2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout

VOLUME AND TONE CONTROL - PREAMPLIFIER K8084

MEASUREMENT SET-UP FOR TRAPS

Measurement of Inductor Q with the MSA Sam Wetterlin 3/31/11. Equation 1 Determining Resonant Q from Inductor Q and Capacitor Q

Product Name Hexa-Band Cellular SMD Antenna GSM / CDMA / DCS / PCS / WCDMA /UMTS /HSDPA / GPRS / EDGE 800 MHz to 2200 MHz

Application Note 91 October Low Cost Coupling Methods for RF Power Detectors Replace Directional Couplers AN91-1

NATIONAL TYPE MB-40SL MULTI-BAND TANK 9/29/1953

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness

So this and all of my Modification Sheet are for education purposes only!

SM1231 USER GUIDE SM1231 RF MODULE USER GUIDE

Application Note Receiving HF Signals with a USRP Device Ettus Research

Typical Performance 1. IS-95C ACPR dbm WCDMA ACLR dbm

Local Oscillator for FM broadcast band MHz

Tx/Rx A high-performance FM receiver for audio and digital applicatons

Instruction Sheet ACS-101. General Description. Specifications. Amplified Broadband UHF Combiner-Splitter. Overall. Antenna Splitter.

RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. 0.

TECHNICAL INFORMATION

LS RS. Figure 1: Assumed inductor model

GRF-3300 RF Training Kits

Digital Active Outdoor DVB-T/T2 Antenna SRT ANT 45

An Adjustable Audio Filter System for the Receiver - Part 1

Internal GPS Active Patch Antenna Application Note

Electronic Circuit Construction:

Antennas, Masts, Head amplifiers, Cables and Filters for a MHz Meteor Scatter Radar Receiver

ECEN 1400, Introduction to Analog and Digital Electronics

BASICS OF C & Ku BAND TRANSMISSIONS & LNBs

Extending Rigid-Flex Printed Circuits to RF Frequencies

Cost. 13p each each

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD OF INSERTION LOSS MEASUREMENT

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

The Radio-Kits Digital SWR meter kit Construction and user manual

MITSUBISHI RF MOSFET MODULE RA07H4047M

MEDIUM WAVE DX ANTENNA

TRANSRADIO SenderSysteme Berlin

Introduction to Receivers

EH-20 20m antenna. By VE3RGW

Joule Thief 3.0 Kit. June 2012, Rev Joule Thief 3.0

K8025 VIDEO PATTERN GENERATOR. Check the picture quality of your monitor or TV, ideal for adjustment or troubleshooting.

Germanium Diode AM Radio

Receiver Multicoupler & R.F. Preselectors

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

A PIC16F628 controlled FLL (Frequency Locked Loop) VFO for HF

POCKET AUDIO GENERATOR K8065

TEECES DOME LIGHTING SYSTEMS

Why is Passive Intermodulation Important?

Technical Datasheet Scalar Network Analyzer Model MHz to 40 GHz

155 Mb/s Fiber Optic Light to Logic Receivers for OC3/STM1

DX AM FM SSB CW PA Amateur Base Station Transceiver OWNER S MANUAL RX / TX 2 4 POWER NF CHANNEL MODE RF POWER OFF CAL OFF OFF CALIBRATE

Cellular Wireless Antennas

Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue

Polymer Termination. Mechanical Cracking 2. The reason for polymer termination. What is Polymer Termination? 3

LOW GAIN BASE STATION ANTENNA AV1312-1A

Transcription:

PGA103+ Low noise, high dynamic range preamp for VHF and UHF By Sam Jewell, G4DDK and Kent Britain, WA5VJB Introduction This paper describes a low noise, high dynamic range VHF/UHF preamp that uses the Minicircuits (MCL) PGA103+ P-HEMT MMIC device. The PGA Amp achieves 0.5dB noise figure from 50MHz to 144MHz and 0.55dB at 432MHz. At 1296MHz the noise figure is 0.85dB. However the real PGA Amp advantage is its incredible dynamic range. The Input third order intercept (IIP3) is better than +10dBm at 144 and 432MHz and over +20dBm at 1296MHz! It is possible to optimise these figures for particular frequency ranges. The design, as described, is optimised for the lower VHF and 432MHz bands. The PGA Amp requires just a single 5V supply at 84mA. It is a broadband amplifier and this means that if it is going to be connected directly to an antenna it may be necessary to use a low loss input filter to reject the strongest out of band signals whilst minimising additional losses that will add directly to the preamplifier noise figure. A suitable filter is described, for use at 144MHz, that provides more that 20dB attenuation across the whole FM band, with over 50dB at 98.5MHz. A suitable 432MHz filter will be described in a future article. Circuit schematic and assembly The schematic really could not be simpler. The PCB is designed to accept 0603 size SMD parts Figure 1 shows the circuit schematic of the basic PGA103+ amplifier. 1

Figure 2 shows the component placement for the PGA AMP. C5 and C6 are fitted across the input power pads. R2 is an optional 1MΩ 0603 size SMD part that can be used as a static leak where static build up may be a problem. IC1 should be mounted with its leads well down the input and output tracks to prevent them shorting to the ground pad. The ground lead can be left unsoldered but the tab MUST be soldered to the ground pad once you are happy that the input and output leads are not shorting to ground. Table 1 Component Value Package R1 5Ω ( two 10Ω in SMD0603 parallel) C1,2,4 1000pF SMD0603 C3 100pF SMD0603 C5 10nF SMD0603/0805 C6 1uF Case A size L1 220nH SMD0603 IC1 PGA103+ SOT89 R2 1MΩ SMD0603 optional Not supplied in the kit Table 1 Component values for a basic PGA Amplifier. The PCB should be populated before attempting to fit the PCB into the box. Box The cable termination PGA AMP PCB fits perfectly into one of the common little tin plate boxes. This is the 20mm x 20mm x 37mm size filter box (FG1) made by Schubert GMBH These boxes are available from G3NYK in the UK and from Eisch-Kafka Electronic in Germany. Short lengths of UT141 coaxial cable with SMA connectors ( either male or female) are used for the input and output RF connections. 3.5mm holes need to be drilled exactly in the centre of the box ends as shown to accept the coaxial cable pigtails 2

. The coaxial cable fits through the holes and terminates on the PCB input and output pads as shown in photo 1. Photo 1 The PCB is soldered vertically into the box with the board input and output pads slightly offset to the 3.5mm diameter holes. Photo 2 shows the extra 5V regulator added onto the rear of the PGA Amp PCB I chose to solder a 78M05 5V/500mA SMD regulator to the ground-plane side of the PCB with 10µF/ 20V working tantalum capacitors for decoupling. This ensures that whatever the input supply voltage variation no more than +5V appears at the PGA AMP. I used a Tusonix 1500pF solder-in feed-through capacitor to bring the supply into the box and then a 1N4001 as a series 'idiot diode' to prevent reverse polarity disasters. 3

Results Table 2 shows the results obtained from a boxed PGA AMP. The usual caveats apply, i.e. systematic uncertainties in the measurements, particularly of the noise figures, test equipment calibration, quoting noise figures to hundredths of a db! etc. These numbers were obtained using the newer FR4 PCB. Table 2 Frequency (MHz) Noise figure Insertion gain Input IP3 (dbm) Input return loss Output return loss 30 0.5 26.2 50 0.5 26.2 3.8 70 0.5 25.9 5.2 22.1 144 0.47 25.1 +11.8 8.7 22 22.5 432 0.53 21.0 +10.5 10.6 1296 0.8 14.1 +20.5 14.7 15.4 24.5 Psat Output (dbm) Table 2 Measured performance of one sample of the PGA103+ amplifier mounted in the recommended tin plate box. Summary Whilst an IIP3 of +11.8dBm at 144MHz is impressive, an IIP3 of +10.5dBm at 432MHz is also pretty good for a device delivering over 20dB of gain and around 0.5dB noise figure. At 1296MHz the IIP3 is also extremely good at over +20dBm. However, this figure could be improved significantly by careful selection of the device operating point. Potentially, it could be as high as +26 to +30dBm. These are the numbers achieved at 1.9GHz in the original cellular radio base station mast head preamplifier application of this device. One of the advantages of this small high performance amplifier is that it is so small that it can be fitted inside many existing transceivers as an alternative receiver front end or even a replacement driver stage, possibly giving a large increase in receiver performance or restoring transmitter drive to a PA. A concern for some 144MHz band users will be strong signal effects from Band 2 FM broadcast stations. However, unless you live or operate very close to one of these monsters, they probably don't cause the average radio amateur any problem. Traditionally, the input selectivity provided by low loss input matching circuits has been used to reduce the effects of FM broadcast stations. These 'filters' are not always as effective as we might imagine! In the PGA AMP the very high IIP3 provides additional protection against Band 2 broadcast signals as well as against close-in paging signals and some in-band signals from the bigger contest stations. 4

Where additional protection from Band 2 is required a simple high pass filter can be used at the PGA AMP input. DJ7VY and LA8AK (SK) both recommended this approach as it can give extremely low losses at the preamplifier input ( <0.13dB) together with 50dB rejection of the more troublesome stations in Band 2. Photo 3 The G4SWX 130MHz low loss HPF built into a Schubert 20 x 20 x 57mm tinplate box with input and output SMA connectors. Note that this is a no-tune filter. Build it as described for best performance. 5

Fig 3 Circuit Schematic for the 130MHz HPF filter developed by G4SWX and tested by G4DDK The filter has been specially designed to give the lowest insertion loss at 144MHz whilst giving a large attenuation across the Band 2 FM broadcast band. If it is built exactly as described it will require no tuning. Do NOT be tempted to replace the enamelled, annealed copper wire with silver plated wire or even a larger gauge wire. The filter should be constructed as shown. The three capacitors should be low loss, High Q, Low ESR microwave SMD types. The filter insertion loss will increase if cheap multilayer ceramic capacitors are substituted. The ones used in the photo are a mixture of AVX and Johanson ceramic capacitors. 1mm diameter enamel insulated annealed copper wire is wound as shown. The wire diameter and winding details are critical if you don't want to spend a long time tuning the filter. It is important to orientate the two coils at approximately 90 in order to minimise unwanted coupling. To check that the filter is working correctly it should be swept and the deep notch will be located at 98.5Mhz +/- 1MHz. Minimum insertion loss will be across 143-146MHz and should be between 0.13-0.14dB The filter was built into a separate box from the preamp and is only connected it if it is required. Most 144MHz operators should not find it necessary to use the filter. Filtering above 144MHz is probably best left to a low loss bandpass filter located at the preamplifier output, although an input 400MHz HPF might also be practical. A suitable 432MHz HPF will be published later. 73 de Sam, G4DDK/W5DDK and Kent, WA5VJB/G8EMY 6