Terminology: When one line intersects each of two given lines, we call that line a transversal.



Similar documents
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

3.1 Triangles, Congruence Relations, SAS Hypothesis

Lecture 24: Saccheri Quadrilaterals

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

Chapter 6 Notes: Circles

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Mathematics Spring 2015 Dr. Alexandra Shlapentokh Guide #3

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

Definitions, Postulates and Theorems

POTENTIAL REASONS: Definition of Congruence:

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Selected practice exam solutions (part 5, item 2) (MAT 360)

Geometry Course Summary Department: Math. Semester 1

Lesson 13: Angle Sum of a Triangle

GEOMETRY CONCEPT MAP. Suggested Sequence:

Lesson 18: Looking More Carefully at Parallel Lines

Math 531, Exam 1 Information.

Conjectures. Chapter 2. Chapter 3

12. Parallels. Then there exists a line through P parallel to l.

Circle Name: Radius: Diameter: Chord: Secant:

Geometry Chapter Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

alternate interior angles

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 4.1 Parallel Lines and Planes

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry. Figure 1: Lines in the Poincaré Disk Model

Lesson 2: Circles, Chords, Diameters, and Their Relationships

5.1 Midsegment Theorem and Coordinate Proof

Final Review Geometry A Fall Semester

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Conjectures for Geometry for Math 70 By I. L. Tse

15. Appendix 1: List of Definitions

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Geometry 8-1 Angles of Polygons

Incenter Circumcenter

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Most popular response to

POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:

Curriculum Map by Block Geometry Mapping for Math Block Testing August 20 to August 24 Review concepts from previous grades.

Solutions to Practice Problems

/27 Intro to Geometry Review

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

Situation: Proving Quadrilaterals in the Coordinate Plane

Inversion. Chapter Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

INCIDENCE-BETWEENNESS GEOMETRY

Geometry Module 4 Unit 2 Practice Exam

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

Geometry Regents Review

CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

NAME DATE PERIOD. Study Guide and Intervention

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, :30 to 11:30 a.m., only.

Mathematics Geometry Unit 1 (SAMPLE)

Contents. 2 Lines and Circles Cartesian Coordinates Distance and Midpoint Formulas Lines Circles...

Visualizing Triangle Centers Using Geogebra

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Angles in a Circle and Cyclic Quadrilateral

CHAPTER 8 QUADRILATERALS. 8.1 Introduction

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Geometry. Relationships in Triangles. Unit 5. Name:

Chapter 5.1 and 5.2 Triangles

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Angles that are between parallel lines, but on opposite sides of a transversal.

Projective Geometry - Part 2

TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Blue Pelican Geometry Theorem Proofs

Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester

1 Solution of Homework

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry

Lesson 5-3: Concurrent Lines, Medians and Altitudes

New York State Student Learning Objective: Regents Geometry

BALTIC OLYMPIAD IN INFORMATICS Stockholm, April 18-22, 2009 Page 1 of?? ENG rectangle. Rectangle

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, :30 to 11:30 a.m.

Quadrilaterals GETTING READY FOR INSTRUCTION

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

GEOMETRY - QUARTER 1 BENCHMARK

Reasoning and Proof Review Questions

Geometry Chapter 10 Study Guide Name

39 Symmetry of Plane Figures

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Unit 2 - Triangles. Equilateral Triangles

Algebra Geometry Glossary. 90 angle

GEOMETRY COMMON CORE STANDARDS

2.1. Inductive Reasoning EXAMPLE A

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

INTRODUCTION TO EUCLID S GEOMETRY

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages : 1-18

Geometry Review Flash Cards

Geometry EOC Practice Test #2

Triangle Congruence and Similarity A Common-Core-Compatible Approach

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

Exercise Set 3. Similar triangles. Parallel lines

Quadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19

Geometry. Higher Mathematics Courses 69. Geometry

Duplicating Segments and Angles

1.1 Identify Points, Lines, and Planes

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?


Transcription:

Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal. We define alternate interior angles, corresponding angles, alternate exterior angles, and interior angles on the same side of the transversal using various betweeness and half-plane notions.

Suppose line l intersects lines m and n at points B and E, respectively, with points A and C on line m and points D and F on line n such that A-B-C and D-E-F, with A and D on the same side of l. Suppose also that G and H are points such that H-E-B- G. Then ABE and BEF are alternate interior angles, as are CBE and DEB. ABG and FEH are alternate exterior angles, as are CBG and DEH. GBC and BEF are a pair of corresponding angles, as are GBA & BED, CBE & FEH, and ABE & DEH. CBE and FEB are interior angles on the same side of the transversal, as are ABE and DEB.

Our Last Theorem in Absolute Geometry: If two lines in the same plane are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. Proof: Let l intersect lines m and n at points A and B respectively. Let 1 2. Suppose m and n meet at point C. Then either 1 is exterior to ABC, or 2 is exterior to ABC. In the first case, the exterior angle inequality gives 1 > 2; in the second, it gives 2 > 1. In either case, we have a contradiction to 1 2. The converse of this statement is one way of stating the Euclidean Parallel Postulate. There are many other formulations as well. Here is a list of a few statements equivalent to Parallel Postulate.

1. If two parallel lines are cut by a transversal, alternate interior angles are congruent. 2. If two lines in the same plane are cut by a transversal so that the sum of the measures of a pair of interior angles on the same side of the transversal is less than 180, then the lines will meet on that side of the transversal. 3. A third line intersecting one of two parallel lines intersects the other. 4. A line perpendicular to one of two parallel lines is perpendicular to the other. 5. The perpendicular bisectors of the sides of a triangle are concurrent. 6. There exists a circle passing through any three noncollinear points. 7. The sum of measures of the angles of a triangle is 180. 8. There exists one triangle such that the sum of measures of the angles is 180. 9. There exists a rectangle. 10. There exist two lines l and m such that l is equidistant from m. 11. There exists a pair of similar, noncongruent triangles. 12. There exists an acute angle such that every line intersecting and perpendicular to one ray of the angle intersects the other ray.

We take as our version of the Parallel Postulate the following: Axiom P-1: If l is any line and P any point not on l, there exists in the plane of l and P one and only one line m that passes through P and is parallel to l. We can now prove Statement 1 on our list, namely: Theorem: If two parallel lines are cut by a transversal, alternate interior angles are congruent. Proof: Let l and m be parallel lines cut by a transversal t at points Q and P, respectively. Suppose for contradiction that alternate interior angles 1 (at point P) and 2 (at point Q) are not congruent, and WLOG that m 1 > m 2. Using the angle construction theorem, create ray on the other side of t from 2 such that m RPQ = m 2. Then from the above theorem, since RPQ and 2 are alternate interior angles, it follows that lines l and are parallel. But that means there are two lines through P parallel to line l, contradicting the parallel postulate. So 1 and 2 are congruent.

Now comes a flood of straightforward corollaries. First, notice that, given two lines in the same plane cut by a transversal, The following are equivalent: 1. A pair of alternate interior angles are congruent 2. Both pairs of alternate interior angles are congruent. 3. Both pairs of alternate exterior angles are congruent 4. All pairs of corresponding angles are congruent. 5. Both pairs of interior angles lying on one side of the transversal are supplementary. This is very easy to prove using vertical angles and linear pairs so we ll leave the proof as an exercise. From these equivalences come the C, F, and Z properties listed in your text on page 215. Taken together with the above two theorems, we have the following: If two lines in the same plane are cut by a transversal, then the lines are parallel iff alternate interior angles are congruent alternate exterior angles are congruent corresponding angles are supplementary interior angles on the same side of the transversal are supplementary exterior angles on the same side of the transversal are supplementary An immediate consequence is: If a line is perpendicular to one of two parallel lines, it is perpendicular to the other also.

Euclidean Exterior Angle Theorem: In any triangle, the measure of an exterior angle is the sum of the measures of the two remote interior angles. Proof: We use the same construction as for the proofs of the exterior angle theorem and Saccheri - Legendre Theorem in absolute geometry. Begin with ABC and point D with B-C-D. Find the midpoint M of and find point E with B-M-E and MB = ME. Connect E and C. Now by construction and SAS, BAM is congruent to ECM, and it is easy to show that E is interior to ACD. Moreover, since BAC ECA, with as the transversal we have congruent alternate interior angles and thus (with. This makes ABC and ECD corresponding angles as the transversal), and hence congruent. Thus

Another flood of corollaries: The sum of the measure of the angles of any triangle is 180. The acute angles of a right triangle are complementary The sum of the measures of any convex quadrilateral is 360 Rectangles exist; in fact, every Saccheri quadrilateral and every Lambert quadrilateral is a rectangle Squares exist. This sharpens most of the almost Euclidean results we ve gotten in the last few chapters. We have one left:

Midpoint Connector Theorem: The segment joining the midpoints of two sides of a triangle is parallel to the third side and has length one-half the third side. Proof: Begin with ABC with L and M the midpoints of and respectively. Extend to find P with L-M-P and LM = MP. Connect P and C. By construction and SAS, LAM PCM and so ( LAC PCA, alternate interior angles). Note also that BL = LA = PC. If we construct, we have BLC PCL (alternate interior angles with as the transversal) so we get BLC PCL by SAS. Thus by CPCF, and since CLP LCB, and they are alternate interior angles with as the transversal,. Corollary: If a line bisects one side of a triangle and is parallel to the second, it also bisects the third side. (Follows from uniqueness of parallels.)