TUBE-TO-TUBESHEET JOINTS: THE MANY CHOICES ABSTRACT KEYWORDS. Seal welding, tube-to-tubesheet welds, heat exchanger, mock-up, tube expansion



Similar documents
TITANIUM FABRICATION CORP.

Heat Exchanger Thin Film Foul Release Applications Corrosion Resistant Protective Coatings Grit Blast Surface Prep of Tubular Equipment

Selecting TEMA Type Heat Exchangers

PMCap Local Thin Area Repair and Restoration Component. for Pressure Retaining Items

Pressure vessel basics for all engineers

Supporting New Build and Nuclear Manufacturing in South Africa

Chapter 5 - Aircraft Welding

TABLE OF CONTENT

WWER Type Fuel Manufacture in China

James M. Pleasants Company

TEMA DESIGNATIONS OF HEAT EXCHANGERS REMOVABLE BUNDLE EXCHANGERS NON REMOVABLE BUNDLE EXCHANGERS SOURCE:

TARIFF CODE and updates standard

How To Design A 3D Print In Metal

The Augustus Group Products Projects and Engineering Consulting. ASME BOILER AND PRESSURE VESSEL CODE Mike Looram

SFI SPECIFICATION 28.1 EFFECTIVE: SEPTEMBER 23, 2011 *

GE Oil & Gas. Air Cooled Heat Exchangers. Robust and reliable for all loads and applications

SECTION SANITARY SEWER AND STORM DRAIN SYSTEMS

ASME/ANSI B Cast Iron Pipe Flanges and Flanged Fittings ASME/ANSI B Malleable Iron Threaded Fittings ASME/ANSI B16.

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

Mounting Instructions for SP4 Power Modules

SECTION COILING COUNTER DOORS. Display hidden notes to specifier. (Don't know how? Click Here)

Trouble shooting guide

5.2. Vaporizers - Types and Usage

FRICTION MATERIALS & BONDING SERVICES

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

Chapter 31. Solid-State Welding Processes

Corrugated Tubular Heat Exchangers

PSAC/SAIT Well Testing Training Program Learning Outcomes/Objectives Level B

SECTION CEMENT-MORTAR LINED AND COATED STEEL PIPE

Oil and Gas Pipeline Design, Maintenance and Repair

Sheet Metal Stamping Dies & Processes

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL

PLATE HEAT EXCHANGER. Installation Manual. Customer Name: Serial number: Purchase order number: Project:

SAMPLE TEST QUESTIONS STEAMFITTER/PIPEFITTER - ITA WEBSITE

1.3.2 Method of construction and restoration of existing water service connections. This shall include:

General Guidelines for Repairing Buried PE Potable Water Pressure Pipes

Window Installation Instructions

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-

SECTION 3: CLARIFICATION AND UTILITIES (1)

In-Line Air Separators

TABLE OF CONTENT

WELDING TECHNOLOGY DEGREES AND CERTIFICATES. Welding Technology Degree. Shielded Metal Arc Plate and Pipe (270 hours) Certificate

Welding of Boilers, Pressure Vessels and Pressure Piping

Depend-O-Lok FxE Expansion Coupling. System No. Submitted By Spec Sect Para Location Date Approved Date. DEPEND-O-LOK FxE EXPANSION COUPLING

ENGLISH FORK GUIDE 2013

Fire Hydrant Troubleshooting

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

Subsection A GENERAL REQUIREMENTS


Packaged Terminal Air Conditioner Wall Sleeve Installation

SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC)

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

V47 Series Temperature Actuated Modulating Water Valves

\ srl High Technology Gear Reducers and Cardan Shafts CERTIFIED QUALITY SYSTEM: UNI ISO EN 9001:2008 ICIM 2779/2; IQNET N. IT UNIVERSAL SHAFT

Aluminium Plate-Fin Heat Exchangers

There are three primary static sealing methods in use today; the flat gasket. And the molded elastomer seal.

PTFE Slide Bearings 04/10 149

BODY OF KNOWLEDGE API-653 ABOVEGROUND STORAGE TANK INSPECTOR CERTIFICATION EXAMINATION November 2015, March 2016 and July 2016 (Replaces October 2013)

General Guidelines for Butt, Saddle, and Socket Fusion of Unlike Polyethylene Pipes and Fittings TN-13/2007

Mechanical Installation

Summary of Changes in. ASME Section IX, 2000 Addenda

HIGH PRESSURE FEEDWATER HEATER REPAIR

ASTM D 1599 Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings

Power Cube Open Source Ecology Page 1. Power Cube. Version 4

Copper and Copper Alloy Tube, Pipe and Fittings

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)

Green Thread Product Data

FLASH TANK ECONOMIZER PRODUCT GUIDE

INDIAN STANDARDS (BIS) ON WELDING

Commercial Semi-Instantaneous Water Heaters

Always. Reliable. Tight. Wall sleeves Versatile solutions for building entries. cablepipebuildingentry+

Care and Maintenance of Circulating Fluidized Bed Boilers Refractory Failure

ALLOY 6022 SHEET. Higher Strength with Improved Formability SUPPLYING THE WORLD S BEST

NUMBER: 08 DD15-10 S.M. REF.: 3.2 ENGINE: DD15 DATE: September 2008

FIELD ACCEPTANCE OF FIELD WELDING GUIDE

ALIGNMENT. Pump and Driver Alignment

Tuesday Jan 30, 2007Track V = Sewer QA:QC/ Asset Management/ European & Japanese Quality Standards

Specification for Rotary Drill Stem Elements

Precision components from start to finish. Excellence. in performance-critical machining & fabrications

STORAGE, INSTALLATION AND MAINTENANCE PROCEDURES

C C C C. MPa MPa MPa MPa 1E-6/ C 1E-6/ C 1E-6/ C 1E-6/ C C C C C

Heat-Pipe Heat Exchanger

*Specify Oversize When Ordering

Pressure Vessel acc. to PED for Chemical Industry fabricated in China

ENGINEERING SPECIFICATION PULTRUDED DYNARAIL FIBERGLASS LADDER & LADDER CAGES

Petrochemical Refinery Maintenance. Complete Maintenance Solutions

TECHNICAL SPECIFICATION

WELDING & CUTTING MAIN EQUIPMENT

Stainless Steel Pipe Fabrication

Plate Heat Exchangers. Series FP, FPDW

Boiler and Burner Cleaning and Servicing Specifications

ASME B31.3 Process Piping. Scope of B31.3 Course

European Welding Standards

SOLDERING PROCEDURE SPECIFICATIONS PROCEDURE QUALIFICATION RECORDS. and SOLDERER PERFORMANCE QUALIFICATION RECORDS

Introduction to JIGS AND FIXTURES

MICHIGAN CIVIL SERVICE COMMISSION JOB SPECIFICATION PLUMBER

Profiles in stock Standard catalogue. Discover the possibilities with aluminium profiles from Sapa

Transcription:

B. J. Sanders Consultant 307 Meyer Street Alvin, Texas 77511 TUBE-TO-TUBESHEET JOINTS: THE MANY CHOICES ABSTRACT After a decision has been made to use zirconium as the material of construction for a shell and tube heat exchanger, one must take into account the process design parameters and other considerations in order to obtain the optimum mechanical design for the specific application. One of the most important steps in the mechanical design process is determining the method of attachment for the tube-totubesheet joint. Many of the problems which have been experienced with zirconium shell and tube heat exchangers could have been avoided by giving more attention to the selection and design of the tube-to-tubesheet joint. Some of the many factors to consider are tubesheet thickness and what type of tubesheet will be used, i.e. solid, explosion clad or loose lined. Other factors to consider are whether or not to seal weld, expand only, strength weld or use some combination of these and what should be sequence of events during proof testing and inspection. KEYWORDS Seal welding, tube-to-tubesheet welds, heat exchanger, mock-up, tube expansion INTRODUCTION Heat exchangers are widely used in many ways and are seen in many types of industrial, commercial and residential applications. Heat exchangers come in many configurations, sizes and materials of construction. Some of the various types of heat exchangers are shell and tube, plate coil, pipe coil, bayonet and air finned tube. This paper deals with the shell and tube heat exchanger which is the most commonly used type in the Chemical Processing Industry (CPI), See Figure 1. 111

Figure 1. DISCUSSION Rules for designing and fabricating the pressure containing parts of shell and tube heat exchangers are contained in the Boiler and Pressure Code of the American Society of Mechanical Engineers (ASME Code) and the general rules for design and fabrication are contained in a publication known as Standards of the Tubular Exchanger Manufacturers Association (TEMA) The major parts of a shell and tube heat exchanger are the shell, heads, tubes, tubesheet and baffles. It is difficult to highlight the importance of one heat exchanger component above any of the others, but due to the complexities of the design and fabrication of a tubesheet and the tube-to-tubesheet joint, there are more potential leak paths at this location than with any of the other components. When zirconium is employed as the construction material the design and fabrication of the tubesheet and completing the tube-to-tubesheet joint becomes even more complicated due to the mechanical properties of zirconium and the necessary controls needed to produce a quality weld that has good ductility, corrosion resistance and strength. Process Design OVERVIEW OF DESIGN DETAILS During the process design phase for a heat exchanger, several factors must be considered and these are shown in Figure 2. TUBE-TO-TUBESHEET JOINT PROCESS DESIGN Specify: Media, Flows, Temperature, Pressure Specify Materials of Construction Determine shell diameter / length Determine type of head(s) Determine shell & head nozzle size / location Determine tubing diameter / gauge (if needed) Determine required heat transfer surface Determine tubesheet hole pattern (pitch) Process design sketch Figure 2. Mechanical Design The major steps carried out during the mechanical design stage are shown in Figure 3. The weld joint for the tubesheet may be one of either a strength weld or a seal weld. Several acceptable designs for these welds are shown in Figure 4. When a strength weld is employed and properly tested it is not necessary to perform the tube end expansion step. However if only seal 112

welding is done then expansion of the tube end is needed in order to achieve the required mechanical strength at the joint. TUBE-TO-TUBESHEET JOINT MECHANICAL DESIGN Calculations to determine thickness for: shell, head(s), nozzles, tubing, tubesheet Number and location of rolling grooves Baffle details Expansion joint requirements General weld joint details Flanged joints and bolting details Tube-to-tubesheet joint details Figure 3. ACCEPTABLE TUBE-TO-TUBESHEET WELDS Acceptable weld joints where a is not less than 1.4t Acceptable weld joints where a is less than 1.4t Figure 4. Thermal Rating and Vibration Analysis Thermal performance rating calculations are required in order to show that the heat exchanger will perform as expected. A vibration analysis is a must for zirconium due to its notch sensitivity and low modulus of elasticity. 113

Quality Plan / Inspection and Test Plan After the process design, mechanical design, thermal rating and vibration analysis are completed and approved, a complete and thorough quality plan and an inspection test plan must be prepared and agreed to between the purchaser and fabricator. These two documents must include all quality control steps, witness points, hold points and inspection approval points for construction and assembly of the entire heat exchanger but more especially the steps involved with the manufacture of the tubesheet and the assembly and testing of the tube-to-tubesheet joint. Quality Plan TUBE-TO-TUBESHEET JOINT Quality plans can be stated in many ways and Figure 5 contains a typical one. TUBE-TO-TUBESHEET JOINT QUALITY PLAN Tube-to-tubesheet mock-up (approval) Shop traveler Use of sub-vendors Welder qualifications Welding procedures Cleaning procedures Step sequence for tube-to-tubesheet joint completion including welding Special closefit per TEMA table RCB-7.41 Figure 5. Inspection and Test Plan Like quality plans, inspection and test plans can vary with heat exchanger types but major steps can be seen in Figure 6. 114

TUBE-TO-TUBESHEET JOINT INSPECTION & TEST PLAN Inspect tubesheet blank (explosion clad) Inspect finish machined tubesheet Witness attachment of tubesheet (if applicable) Witness cleaning of tubesheet holes and tube ends Witness insertion of tubes and expansion of tube ends Witness welding of tube ends Witness air test Witness helium leak test Witness hydrostatic test Figure 6. Fabrication-Inspection-Testing of the Tube-to-Tubesheet Joint The fabrication of a heat exchanger involves many operations of forming, machining, drilling and welding in order to manufacture all of the parts, which are to be assembled to produce the final heat exchanger. Emphasis here is on fabricating the tubesheet, inserting the tube ends and securing them in the tubesheet holes whether by expanding only, welding only or a combination of expanding and welding. Tube end expansion may be done either by hydraulic means or by use of a conventional three roller expander. Welding may be done manually, with or without filler metal, or by use of semiautomatic welding equipment. Before the fabrication step is begun, a mock-up tube-to-tubesheet joint should be assembled using the same materials and design that is proposed for the full size heat exchanger. See Figures 7 and 8 for examples of a mock-up tube-to-tubesheet joint. The proposed tube end expansion method and welding procedure should be employed and the mock-up cross-sectioned for macro examination in order to proof test all the parameters and establish the weld quality and weld penetration. In some unusual cases micro examination may also be employed to check weld quality. 115

MOCKUP SKETCH Test Specimen for Square Pitch Test Specimen for Triangular Pitch TEAR MACRO TEAR Figure 7. SQUARE PITCH TEAR TEAR MACRO TRIANGULAR PITCH TEAR TEST ( if specified) SECTION OF TUBESHEET MOCKUP Figure 8. In my experience the most debated event in making the tube-to- tubesheet joint is the sequence in which the expansion, welding and testing is done. One camp says to weld, test the weld and then expand; another says expand, weld and then test the weld. The purchaser must ultimately make the decision for which sequence to use. Figure 9 lists the steps to follow if "weld tube ends-and then expand" is chosen as the attachment method. If "expand tube ends-and then weld" is followed, then the steps listed in Figure 10 should be followed. 116

WELD TUBE ENDS-EXPAND Clean tubesheet holes Clean tube ends Insert tubes into tubesheet Weld tube ends Air test welds; repair as needed Preliminary helium test welds; repair as needed Expand tube ends Penetrant test welds; repair as needed Final helium test welds Hydrostatic test Figure 9. 117

EXPAND TUBE ENDS-WELD Clean tubesheet holes Clean tube ends Insert tubes into tubesheet Expand tube ends Air test rolls; re-expand as needed Weld tube ends Helium test welds; repair as needed Hydrostatic test Figure 10. Preferred from Experience The preferred method of making the tube-to-tubesheet joint is first to expand and then seal weld. When this sequence is followed a higher quality expanded joint is possible and the risk of cracking the seal weld during the expansion step is eliminated. In addition a higher quality seal weld can be made. SUMMARY AND CONCLUSIONS The two most important steps for accomplishing a quality tube-to-tubesheet joint are the production of a good mock-up (and adherence to the parameters established) and partnering with your heat exchanger vendor. If the purchaser and vendor communicate well and follow the agreed upon Quality Plan and Inspection and Test Plan the final product should meet or exceed expectations and during the process minimal re-work or repair will be required. 118

119