The Genetics of Drosophila melanogaster



Similar documents
Mendelian Genetics in Drosophila

LAB 11 Drosophila Genetics

Chapter 9 Patterns of Inheritance

CCR Biology - Chapter 7 Practice Test - Summer 2012

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

CHROMOSOMES AND INHERITANCE

Mendelian and Non-Mendelian Heredity Grade Ten

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

Name: Class: Date: ID: A

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

GENETIC CROSSES. Monohybrid Crosses

Genetics Lecture Notes Lectures 1 2

Chromosomes, Mapping, and the Meiosis Inheritance Connection

5 GENETIC LINKAGE AND MAPPING

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Genetics for the Novice

Ringneck Doves. A Handbook of Care & Breeding

2 GENETIC DATA ANALYSIS

Heredity - Patterns of Inheritance

Animal Behavior. Evaluation copy

Drosophila Genetics by Michael Socolich May, 2003

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

I. Genes found on the same chromosome = linked genes

7A The Origin of Modern Genetics

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Bio 102 Practice Problems Mendelian Genetics and Extensions

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Two copies of each autosomal gene affect phenotype.

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

Hardy-Weinberg Equilibrium Problems

Biology Final Exam Study Guide: Semester 2

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Gene Mapping Techniques

Lesson Plan: GENOTYPE AND PHENOTYPE

Biology Notes for exam 5 - Population genetics Ch 13, 14, 15

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

Trasposable elements: P elements

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

The Making of the Fittest: Natural Selection in Humans

Baby Lab. Class Copy. Introduction

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Meiosis is a special form of cell division.

B2 5 Inheritrance Genetic Crosses

Life Cycle of a Butterfly

MCB41: Second Midterm Spring 2009

Incomplete Dominance and Codominance

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date:

Insects in the Classroom Lesson Plan No. 101

Genetics Module B, Anchor 3

Genetics with a Smile

Practice Problems 4. (a) 19. (b) 36. (c) 17

Phenotypes and Genotypes of Single Crosses

Answer Key Problem Set 5

Reebops. A model organism for teaching genetic concepts

DNA Determines Your Appearance!

I somatic vigor and, at the same time, show disturbances in the gonads

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

The Cricket Lab. Introduction

Variations on a Human Face Lab

Chapter 13: Meiosis and Sexual Life Cycles

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc

Chapter 13: Meiosis and Sexual Life Cycles

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

Science Life Cycle of the Butterfly

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Population Genetics and Multifactorial Inheritance 2002

P1 Gold X Black. 100% Black X. 99 Black and 77 Gold. Critical Values

Process 3.5. A Pour it down the sink. B Pour it back into its original container. C Dispose of it as directed by his teacher.

Butterfly or Moth? Made for 2nd Graders... Project Bibliography

Is it statistically significant? The chi-square test

Chapter 4 The role of mutation in evolution

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

12.1 The Role of DNA in Heredity

1. You are studying three autosomal recessive mutations in the fruit fly Drosophila

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

Influence of Sex on Genetics. Chapter Six

Examples of Math Applications in Forensic Investigations Anthony and Patricia Nolan Bertino Bertino Forensics

BIOLOGY HIGHER LEVEL

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

MCAS Biology. Review Packet

240Tutoring Life Science Study Material

Basics of Marker Assisted Selection

Infestations of the spotted

Mendelian inheritance and the

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Accentuate the Negative: Homework Examples from ACE

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School

SPECIES DESCRIPTION Picture

Transcription:

The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic studies. The reason it is so widely used is because it is easily cultured in the lab, has a short generation time, has a diploid number of 8 (4 homologous pairs of chromosome), are inexpensive, have easily seen traits,a and can produce many offspring. The life cycle (from egg to adult) takes about 10 days at room temperature. Eggs are laid and hatch into first instar larvae. These larvae feed voraciously on the culture medium provided. You can observe this by looking at a culture bottle - you should see many tunnels in the medium made by small white larvae (or maggots). These first instar larvae go through several instar stages and eventually the third instar larvae crawl up the sides of the bottle away from the culture medium. There they stop and their larval cuticle hardens forming a dark brown pupa. Metamorphosis takes place during the pupal stage. Larvae tissues degenerate and reorganize forming an adult fly inside the pupal case. When metamorphosis is complete, the adult fly emerges from the pupal case. After the fly emerges, the wings expand and dry, the abdomen becomes more rotund, and the color of the body darkens. Sexing flies: Male and female fruit flies can be distinguished from each other in three ways: 1) Only males have a sex comb, a fringe of black bristles on the forelegs. 2) The tip of the abdomen is elongate and somewhat pointed in females and more rounded in males. 3) The abdomen of the female has seven segments, whereas that of the male has only five segments.

Genetic notation: In fruit fly genetics, the normal fly is called a "wild type" and any fly exhibiting a phenotypic mutation is called a "mutant". Mutant flies are given names that generally denote the type of mutation the fly exhibits. For example, the mutant "ebony" has a much darker body than the wild type fly. Each mutation is also given a letter code. Thus, in the case of ebony, the code is a lower case e. The wild type fly is denoted by a +. A white eyed mutation is given the code w. A sepia eye mutation is given the code se. The wild type is still denoted by a +. Types of Inheritance in a Cross: Assume you identify 100 flies and record the following data for the offspring of an unknown cross involving a single trait. Male Female Total Wild type 35 41 76 Sepia eye 11 13 24 What are the possible crosses that could have produced this pattern of offspring? 1. se se X + + (homozygous sepia crossed with homozygous wild type) 2. + se X + se (heterozygous wild type crossed with heterozygous wild type) 3. + se X se se (heterozygous wild type crossed with homozygous sepia) 4. + se X + + (heterozygous wild type crossed with homozygous wild type) There appears to be a ration of 3:1 wild type to recessive. Cross 2 would be the likely parents. To test your hypothesis that the observed ratio of 76:24 is the same as the expected ratio of 3:1, we can use a statistic called the chi square statistic.

Chi square statistic: A chi square (X 2 ) statistic is used to investigate whether observed and expected ratios differ due to chance. In statistical testing we always use a null hypothesis that any difference is due to chance. In our case, we can use the actual observed number of flies of each type as our observed values. We can find the expected number of flies of each type for a 3:1 ratio by using the same number of flies (100 flies) and dividing by 4 to give us expected values of 75:25 for a 3:1 ratio of 100 flies. Calculate the chi square statistic (x 2 ) by completing the following steps: 1. For each observed number in the table subtract the corresponding expected number (O E). 2. Square the difference [ (O E) 2 ]. 3. Divide the squares obtained for each cell in the table by the expected number for that cell [ (O - E) 2 / E ]. 4. Sum all the values for (O - E) 2 / E. This is the chi square statistic. the calculation would be: Observed Expected (O E) (O E) 2 (O E) 2 / E Wild type 76 75 1 1 0.013 Mutant type 24 25-1 1 0.042 totals 100 100 x 2 = 0.055 For our data there are two categories, wild type and sepia, so degrees of freedom is 2-1=1. Determine the probability of your chi-square value on the distribution table below. Is the probability 5% or greater (p = or > 0.05)? If so, you can accept the null hypothesis that a ratio of 76:24 is the same as a 75:25 ratio. It means that we do have a 3:1 ratio of wild type to mutant offspring and that these offspring could have come from a cross between two heterozygotes.

Go the the web site: http://www.sciencecourseware.org/vcise/drosophila/ Click on enter as a guest. Of course, fruit flies also have sex chromosomes and they contain a subset of genes as well. If the gene is located on a sex chromosome, we use a slightly different notation. Under normal diploid conditions a female fruit fly has two X chromosomes, a male has an X and a Y chromosome. Sex-linked genes are located on one of the sex chromosomes (usually the X chromosome). Thus, the genotypic notation for a mutant gene for white eye color on the X chromosome would look like:! X + X + = wild type female! X w X w = white-eyed female! X + X w = wild type heterozygote female! X w Y = white-eyed male! X + Y = wild type male You will perform the following cross.!! P: X + X + crossed with X w Y! F1 Hypothesis: (you may wish to work out a Punnett square)! F2 Hypothesis: (you may wish to work out a Punnett square)

To perform the cross: 1. Click on computer to order flies. 2. Click on order flies. 3. A female wild type fly appears on the screen. Click on the green cart symbol to add her to your shopping cart. 4. A male wild type fly appears on the screen. Click on eye color to the right of the fly. Select white. Then click on the green cart symbol to add him to your shopping cart. 5. Now click on your shopping cart and select ʻcheck outʼ. Click on yes when asked if you are sure. 6. When flies arrive, click on box. Then click on the mating jar to mate the P generation flies. 7. click on the mating jar, then the incubator door to select the flies in the mating jar. The flies are knocked out and placed under a dissection microscope. 8. Click on sort flies. 9. Click on the pile on the left side of the screen and examine. Record gender Number Phenotype Genotype 10. Click on the pile on the right side of the screen and examine. Record gender Number Phenotype Genotype Finally, click on ʻreturn to labʼ. 11. Click on mating jar to mate the F1 flies. 12. Click on the mating jar, then incubator and select the mating jar for cross #2. Once knocked out, click on ʻsort fliesʼ. There are three piles: Record the number and gender of each in the space below.! Pile 1: gender number! Pile 2: gender number! Pile 3: gender number 13. Click on send data to computer, followed by clicking on ʻyesʼ. 14. Click on analyze data. 15. Click on chi-square analysis. 16. Calculate expected values based on your F2 hypothesis and insert them into the table. 17. Click on ʻtest this hypothesisʼ. 18. Print out your chi-square analysis 19. On the chi-square analysis, explain if you accept the hypothesis. Why or why not?

Now lets examine genetic linkage. Linked genes are located on the same chromosome. We are going to run THREE different dihybrid crosses and use the data to determine the order of genes on chromosome two of Drosophila melanogaster. 1. Click on computer to order flies. 2. Click on order flies. 3. A female wild type fly appears on the screen. Click on the green cart symbol to add her to your shopping cart. 4. A male wild type fly appears on the screen. Click on eye color to the right of the fly. Select brown. Then click on wing size and select vestigial. Now click on the green cart symbol to add him to your shopping cart. 5. Now click on your shopping cart and select ʻcheck outʼ. Click on yes when asked if you are sure. 6. When flies arrive, click on box. Then click on the mating jar to mate the P generation flies. 7. Click on the mating jar, then the incubator door to select the flies in the mating jar. The flies are knocked out and placed under a dissection microscope. 8. Click on sort flies. 9. Click on the pile of female flies! What is their genotype? their phenotype? Click on ʻreturn to labʼ. 10. Click on order flies. 11. Click on male. Then click eye color and select brown. Click on wing size and select vestigial. Add to card and check out. 12. Click on box and mating jar to mate these males with your females from cross #1. 13. Click on incubator and select the mating jar for cross #2. Once knocked out, click on ʻsort fliesʼ. (There should be eight piles) 14. Click on send data to computer, followed by clicking on ʻyesʼ. 15. Click on analyze data. 16. Click on ʻignore genderʼ since there is not a significant difference between male and females results. 17. Click on chi-square analysis. 18. Calculate expected values based on your F2 hypothesis and insert them into the table. 19. Click on ʻtest this hypothesisʼ. 20. Print out your chi-square analysis 21. On the chi-square analysis, explain why your results are significant and calculate the crossing over frequency of the eye color and wing size genes.

Repeat the same procedures but for body color and wing size. 1. Click on computer to order flies. 2. Click on order flies. 3. A female wild type fly appears on the screen. Click on the green cart symbol to add her to your shopping cart. 4. A male wild type fly appears on the screen. Click on body color to the right of the fly. Select black. Then click on wing size and select vestigial. Now click on the green cart symbol to add him to your shopping cart. 5. Now click on your shopping cart and select ʻcheck outʼ. Click on yes when asked if you are sure. 6. When flies arrive, click on box. Then click on the mating jar to mate the P generation flies. 7. Click on the mating jar, then the incubator door to select the flies in the mating jar. The flies are knocked out and placed under a dissection microscope. 8. Click on sort flies. 9. Click on the pile of female flies! What is their genotype? their phenotype? Click on ʻreturn to labʼ. 10. Click on order flies. 11. Click on male. Then click body color and select black. Click on wing size and select vestigial. Add to card and check out. 12. Click on box and mating jar to mate these males with your females from cross #1. 13. Click on incubator and select the mating jar for cross #2. Once knocked out, click on ʻsort fliesʼ. (There should be eight piles) 14. Click on send data to computer, followed by clicking on ʻyesʼ. 15. Click on analyze data. 16. Click on ʻignore genderʼ since there is not a significant difference between male and females results. 17. Click on chi-square analysis. 18. Calculate expected values based on your F2 hypothesis and insert them into the table. 19. Click on ʻtest this hypothesisʼ. 20. Print out your chi-square analysis 21. On the chi-square analysis calculate the crossing over frequency of the body color and wing size genes.

Repeat the same procedures but for body color and eye color. 1. Click on computer to order flies. 2. Click on order flies. 3. A female wild type fly appears on the screen. Click on the green cart symbol to add her to your shopping cart. 4. A male wild type fly appears on the screen. Click on body color to the right of the fly. Select black. Then click on eye color and select brown. Now click on the green cart symbol to add him to your shopping cart. 5. Now click on your shopping cart and select ʻcheck outʼ. Click on yes when asked if you are sure. 6. When flies arrive, click on box. Then click on the mating jar to mate the P generation flies. 7. Click on the mating jar, then the incubator door to select the flies in the mating jar. The flies are knocked out and placed under a dissection microscope. 8. Click on sort flies. 9. Click on the pile of female flies! What is their genotype? their phenotype? Click on ʻreturn to labʼ. 10. Click on order flies. 11. Click on male. Then click body color and select black. Click on eye color and select brown. Add to card and check out. 12. Click on box and mating jar to mate these males with your females from cross #1. 13. Click on incubator and select the mating jar for cross #2. Once knocked out, click on ʻsort fliesʼ. (There should be eight piles) 14. Click on send data to computer, followed by clicking on ʻyesʼ. 15. Click on analyze data. 16. Click on ʻignore genderʼ since there is not a significant difference between male and females results. 17. Click on chi-square analysis. 18. Calculate expected values based on your F2 hypothesis and insert them into the table. 19. Click on ʻtest this hypothesisʼ. 20. Print out your chi-square analysis 21. On the chi-square analysis calculate the crossing over frequency of the body color and eye color genes. 22. Draw a map of the chromosome showing the body color, eye color, and wing size genes.